TY - JOUR
T1 - Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus
AU - Loving, Crystal L.
AU - Osorio, Fernando A.
AU - Murtaugh, Michael P.
AU - Zuckermann, Federico A.
N1 - Publisher Copyright:
© 2015.
PY - 2015/9/15
Y1 - 2015/9/15
N2 - Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
AB - Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
KW - Antibody
KW - Cell-mediated immunity
KW - Immunology
KW - Innate immunity
KW - PRRSV
UR - http://www.scopus.com/inward/record.url?scp=84940453660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940453660&partnerID=8YFLogxK
U2 - 10.1016/j.vetimm.2015.07.003
DO - 10.1016/j.vetimm.2015.07.003
M3 - Review article
C2 - 26209116
AN - SCOPUS:84940453660
SN - 0165-2427
VL - 167
SP - 1
EP - 14
JO - Veterinary immunology and immunopathology
JF - Veterinary immunology and immunopathology
IS - 1-2
ER -