TY - JOUR
T1 - Initial investigation of the corrosion stability of craniofacial implants
AU - Beline, Thamara
AU - Vechiato Filho, Aljomar José
AU - Wee, Alvin G.
AU - Sukotjo, Cortino
AU - dos Santos, Daniela Micheline
AU - Brandão, Thaís Bianca
AU - Barão, Valentim Adelino Ricardo
N1 - Publisher Copyright:
© 2017 Editorial Council for the Journal of Prosthetic Dentistry
PY - 2018/1
Y1 - 2018/1
N2 - Statement of problem Although craniofacial implants have been used for retention of facial prostheses, failures are common. Titanium undergoes corrosion in the oral cavity, but the corrosion of craniofacial implants requires evaluation. Purpose The purpose of this in vitro study was to investigate the corrosion stability of commercially pure titanium (CP Ti) exposed to simulated human perspiration at 2 different pH levels (5.5 and 8). Material and methods Fifteen titanium disks were divided into 3 groups (n=5 per group). The control group was subjected to simulated body fluid (SBF) (control). Disks from the 2 experimental groups were immersed in simulated alkaline perspiration (SAKP) and simulated acidic perspiration (SACP). Electrochemical tests, including open circuit potential (3600 seconds), electrochemical impedance spectroscopy, and potentiodynamic tests were performed according to the standardized method of 3-cell electrodes. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α=.05). Results Simulated human perspiration reduced the corrosion stability of CP Ti (P<.05). The SBF group presented the lowest capacitance values (P<.05). SAKP and SACP groups showed increased values of capacitance and showed no statistically significant differences (P>.05) from each other. The increase in capacitance suggests that the acceleration of the ionic exchanges between the CP Ti and the electrolyte leads to a lower corrosion resistance. SAKP reduced the oxide layer resistance of CP Ti (P<.05), and an increased corrosion rate was noted in both simulated human perspiration groups. Conclusions Craniofacial implants can corrode when in contact with simulated human perspiration, whereas alkaline perspiration shows a more deleterious effect. Perspiration induces a more corrosive effect than simulated body fluid.
AB - Statement of problem Although craniofacial implants have been used for retention of facial prostheses, failures are common. Titanium undergoes corrosion in the oral cavity, but the corrosion of craniofacial implants requires evaluation. Purpose The purpose of this in vitro study was to investigate the corrosion stability of commercially pure titanium (CP Ti) exposed to simulated human perspiration at 2 different pH levels (5.5 and 8). Material and methods Fifteen titanium disks were divided into 3 groups (n=5 per group). The control group was subjected to simulated body fluid (SBF) (control). Disks from the 2 experimental groups were immersed in simulated alkaline perspiration (SAKP) and simulated acidic perspiration (SACP). Electrochemical tests, including open circuit potential (3600 seconds), electrochemical impedance spectroscopy, and potentiodynamic tests were performed according to the standardized method of 3-cell electrodes. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α=.05). Results Simulated human perspiration reduced the corrosion stability of CP Ti (P<.05). The SBF group presented the lowest capacitance values (P<.05). SAKP and SACP groups showed increased values of capacitance and showed no statistically significant differences (P>.05) from each other. The increase in capacitance suggests that the acceleration of the ionic exchanges between the CP Ti and the electrolyte leads to a lower corrosion resistance. SAKP reduced the oxide layer resistance of CP Ti (P<.05), and an increased corrosion rate was noted in both simulated human perspiration groups. Conclusions Craniofacial implants can corrode when in contact with simulated human perspiration, whereas alkaline perspiration shows a more deleterious effect. Perspiration induces a more corrosive effect than simulated body fluid.
UR - http://www.scopus.com/inward/record.url?scp=85019902025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019902025&partnerID=8YFLogxK
U2 - 10.1016/j.prosdent.2017.02.015
DO - 10.1016/j.prosdent.2017.02.015
M3 - Article
C2 - 28533010
AN - SCOPUS:85019902025
SN - 0022-3913
VL - 119
SP - 185
EP - 192
JO - Journal of Prosthetic Dentistry
JF - Journal of Prosthetic Dentistry
IS - 1
ER -