Inhibition of Xylene Isomerization in the Production of Renewable Aromatic Chemicals from Biomass-Derived Furans

C. Luke Williams, Katherine P. Vinter, Ryan E. Patet, Chun Chih Chang, Nima Nikbin, Shuting Feng, Matthew R. Wiatrowski, Stavros Caratzoulas, Wei Fan, Dionisios G. Vlachos, Paul J. Dauenhauer

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Inhibition of p-xylene isomerization in the presence of H-Y (Si/Al 2.6) and H-BEA (Si/Al 12.5) zeolites was studied under conditions relevant to p-xylene production from 2,5-dimethylfuran (DMF) and ethylene. Through examination of the reaction components, it was shown that both DMF and 2,5-hexanedione inhibit transalkylation and methyl shift reactions of p-xylene, while other reaction components, water and ethylene, do not. Retention of Bronsted acid sites after the reaction was shown through the use of 27Al NMR for both H-Y and H-BEA zeolites, but with a reduction in the ratio of tetrahedrally coordinated aluminum (strong acid sites) to octahedrally coordinated aluminum (Lewis acid sites) coinciding with the disappearance of the framework aluminum. Diffuse reflectance spectroscopy has shown preferential adsorption of DMF and 2,5-hexanedione (DMF + H2O) relative to p-xylene to the Bronsted acid sites located in the super and sodalite cages of the H-Y. Desorption characteristics for DMF and p-xylene in H-Y and H-BEA were determined by thermogravimetric analysis, consistent with adsorption energetics of individual chemical species and dimeric complexes evaluated by an ONIOM method. Evaluation of three mechanisms, allowing for production of p-xylene from DMF and ethylene while also inhibiting p-xylene isomerization, supports high surface coverage of the active site with 2,5-hexanedione, supported by electronic structure calculations.

Original languageEnglish (US)
Pages (from-to)2076-2088
Number of pages13
JournalACS Catalysis
Issue number3
StatePublished - Mar 4 2016

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.


  • Diels-Alder
  • dimethylfuran
  • furan
  • isomerization
  • xylene
  • zeolite


Dive into the research topics of 'Inhibition of Xylene Isomerization in the Production of Renewable Aromatic Chemicals from Biomass-Derived Furans'. Together they form a unique fingerprint.

Cite this