Abstract
Previous studies have shown that a single point mutation in endostatin at position 125 (P125A) can improve the biological activity of endostatin. Addition of an integrin-targeting moiety, R-G-D, resulted in better localization to tumor vasculature and improved the antiangiogenic activity of endostatin. Because endostatin has relatively shorter serum half-life, frequent dosing was required for inhibiting tumor growth. In our study, we have genetically fused RGD-P125A-endostatin to Fc of IgG4 isotype and evaluated its antiangiogenic and antitumor effects in athymic mice. Two genetic constructs were made, RGD-P125A-endostatin-Fc (RE-Fc) and P125A-endostatin-RGD-Fc (ER-Fc). Both constructs were cloned and expressed in mammalian cells. Purified fusion proteins inhibited endothelial cell migration and proliferation better than yeast-derived P125A-endostatin. Both RE-Fc and ER-Fc inhibited ovarian cancer growth and were found to be as effective as Bevacizumab treatment. Fusion protein showed marked increased half-life. Combination treatment with Bevacizumab and ER-Fc showed additive inhibition of ovarian cancer growth. These studies demonstrate that genetic fusion with human IgG4-Fc increases the half-life of P125A-endostatin and can be used along with Bevacizumab to improve antiangiogenic and antitumor activities.
Original language | English (US) |
---|---|
Pages (from-to) | 751-761 |
Number of pages | 11 |
Journal | International Journal of Cancer |
Volume | 129 |
Issue number | 3 |
DOIs | |
State | Published - Aug 1 2011 |
Keywords
- Bevacizumab
- Fc-fusion protein
- mutant endostatin
- ovarian cancer
- tumor angiogenesis