Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development

Anshulika Sable, Krishan M Rai, Amit Choudhary, Vikash K Yadav, Sudhir K Agarwal, Samir V Sawant

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Cotton fiber is a specialized unicellular structure useful for the study of cellular differentiation and development. Heat shock proteins (HSPs) have been shown to be involved in various developmental processes. Microarray data analysis of five Gossypium hirsutum genotypes revealed high transcript levels of GhHSP90 and GhHSP70 genes at different stages of fiber development, indicating their importance in the process. Further, we identified 26 and 55 members of HSP90 and HSP70 gene families in G. hirsutum. The treatment of specific inhibitors novobiocin (Nov; HSP90) and pifithrin/2-phenylethynesulfonamide (Pif; HSP70) in in-vitro cultured ovules resulted in a fewer number of fiber initials and retardation in fiber elongation. The molecular chaperone assay using bacterially expressed recombinant GhHSP90-7 and GhHSP70-8 proteins further confirmed the specificity of inhibitors. HSP inhibition disturbs the H2O2 balance that leads to the generation of oxidative stress, which consequently results in autophagy in the epidermal layer of the cotton ovule. Transmission electron microscopy (TEM) of inhibitor-treated ovule also corroborates autophagosome formation along with disrupted mitochondrial cristae. The perturbations in transcript profile of HSP inhibited ovules show differential regulation of different stress and fiber development-related genes and pathways. Altogether, our results indicate that HSP90 and HSP70 families play a crucial role in cotton fiber differentiation and development by maintaining cellular homeostasis.

Original languageEnglish (US)
Pages (from-to)3620
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Feb 26 2018

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development'. Together they form a unique fingerprint.

Cite this