TY - JOUR
T1 - Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells
T2 - Structure- activity relationship and mechanisms involved
AU - Chung, Jee Y.
AU - Huang, Chuanshu
AU - Meng, Xiaofeng
AU - Dong, Zigang
AU - Yang, Chung S.
PY - 1999/9/15
Y1 - 1999/9/15
N2 - ras gene mutation, which perpetually turns on the growth signal transduction pathway, occurs frequently in many cancer types. The mouse epidermal JB6 cell line has been transfected with a mutant H-ras gene to mimic carcinogenesis in vitro. These transformed cells (30.7b Ras 12) are able to grow in soft agar, exhibiting anchorage independence and high endogenous activator protein 1 (AP-1) activity, which can be detected by a stable AP-1 luciferase reporter. The present study investigated the ability of different pure green and black tea polyphenols to inhibit this ras signaling pathway. The major green tea polyphenols (catechins), (-)- epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin, (-)-epicatechin-3- gallate, (-)-epicatechin, and their epimers, and black tea polyphenols, theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3,3'- digallate (TFdiG), were compared with respect to their ability to inhibit the growth of 30.7b Ras 12 cells and AP-1 activity. All of the tea polyphenols except (-)-epicatechin showed strong inhibition of cell growth and AP-1 activity. Among the catechins, both the galloyl structure on the B ring and the gallate moiety contributed to the growth inhibition and AP-1 activity; the galloyl structure appeared to have a stronger effect on the inhibitory action than the gallate moiety. The epimers of the catechins showed similar inhibitory effects on AP-1 activity. The addition of catalase to the incubation of the cells with EGCG or TFdiG did not prevent the inhibitory effect on AP-1 activity, suggesting that H2O2 does not play a significant role in the inhibition by tea polyphenols. Both EGCG and TFdiG inhibited the phosphorylation of p44/42 (extracellular signal-regulated kinase 1 and 2) and c-jun without affecting the levels of phosphorylated-c-jun-NH2-terminal kinase. TFdiG inhibited the phosphorylation of p38, but EGCG did not. EGCG lowered the level of c-jun, whereas TFdiG decreased the level of fra-1. These results suggest that tea polyphenols inhibited AP-1 activity and the mitogen- activated protein kinase pathway, which contributed to the growth inhibition; however, different mechanisms may be involved in the inhibition by catechins and theaflavins.
AB - ras gene mutation, which perpetually turns on the growth signal transduction pathway, occurs frequently in many cancer types. The mouse epidermal JB6 cell line has been transfected with a mutant H-ras gene to mimic carcinogenesis in vitro. These transformed cells (30.7b Ras 12) are able to grow in soft agar, exhibiting anchorage independence and high endogenous activator protein 1 (AP-1) activity, which can be detected by a stable AP-1 luciferase reporter. The present study investigated the ability of different pure green and black tea polyphenols to inhibit this ras signaling pathway. The major green tea polyphenols (catechins), (-)- epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin, (-)-epicatechin-3- gallate, (-)-epicatechin, and their epimers, and black tea polyphenols, theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3,3'- digallate (TFdiG), were compared with respect to their ability to inhibit the growth of 30.7b Ras 12 cells and AP-1 activity. All of the tea polyphenols except (-)-epicatechin showed strong inhibition of cell growth and AP-1 activity. Among the catechins, both the galloyl structure on the B ring and the gallate moiety contributed to the growth inhibition and AP-1 activity; the galloyl structure appeared to have a stronger effect on the inhibitory action than the gallate moiety. The epimers of the catechins showed similar inhibitory effects on AP-1 activity. The addition of catalase to the incubation of the cells with EGCG or TFdiG did not prevent the inhibitory effect on AP-1 activity, suggesting that H2O2 does not play a significant role in the inhibition by tea polyphenols. Both EGCG and TFdiG inhibited the phosphorylation of p44/42 (extracellular signal-regulated kinase 1 and 2) and c-jun without affecting the levels of phosphorylated-c-jun-NH2-terminal kinase. TFdiG inhibited the phosphorylation of p38, but EGCG did not. EGCG lowered the level of c-jun, whereas TFdiG decreased the level of fra-1. These results suggest that tea polyphenols inhibited AP-1 activity and the mitogen- activated protein kinase pathway, which contributed to the growth inhibition; however, different mechanisms may be involved in the inhibition by catechins and theaflavins.
UR - http://www.scopus.com/inward/record.url?scp=0033568515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033568515&partnerID=8YFLogxK
M3 - Article
C2 - 10493515
AN - SCOPUS:0033568515
SN - 0008-5472
VL - 59
SP - 4610
EP - 4617
JO - Cancer Research
JF - Cancer Research
IS - 18
ER -