Inhibiting HTLV-1 Protease: A Viable Antiviral Target

Gordon J. Lockbaum, Mina Henes, Nathaniel Talledge, Linah N. Rusere, Klajdi Kosovrasti, Ellen A. Nalivaika, Mohan Somasundaran, Akbar Ali, Louis M. Mansky, Nese Kurt Yilmaz, Celia A. Schiffer

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 μM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.

Original languageEnglish (US)
Pages (from-to)529-538
Number of pages10
JournalACS Chemical Biology
Issue number3
StatePublished - Mar 19 2021

Bibliographical note

Publisher Copyright:
© 2021 American Chemical Society. All rights reserved.


Dive into the research topics of 'Inhibiting HTLV-1 Protease: A Viable Antiviral Target'. Together they form a unique fingerprint.

Cite this