Abstract
Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo-and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR + T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR+ T-cell infusions derived from allogeneic sources.
Original language | English (US) |
---|---|
Pages (from-to) | 444-450 |
Number of pages | 7 |
Journal | Human gene therapy |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2012 |