Abstract
Immunological memory (MEM) development is affected by stress-induced neuroendocrine mediators. Current knowledge about how a behavioral interaction, such as social defeat, alters the development of adaptive immunity, and MEM is incomplete. In this study, the experience of social disruption stress (SDR) prior to a primary influenza viral infection enhanced the frequency and function of the T cell memory pool. Socially stressed mice had a significantly enlarged population of CD8+ T cells specific for the immunodominant NP366-74 epitope of A/PR/8/34 virus in lung and spleen tissues at 6-12 wk after primary infection (resting memory). Moreover, during resting memory, SDR-MEM mice responded with an enhanced footpad delayed-type hypersensitivity response, and more IFN-γ-producing CD4+ T cells were detected after ex vivo stimulation. When mice were rechallenged with A/PR/8/34 virus, SDR-MEM mice terminated viral gene expression significantly earlier than MEM mice and generated a greater DbNP366-74CD8+ T cell response in the lung parenchyma and airways. This enhancement was specific to the T cell response. SDR-MEM mice had significantly attenuated anti-influenza IgG titers during resting memory. Similar experiments in which mice were primed with X-31 influenza and challenged with A/PR/8/34 virus elicited similar enhancements in the splenic and lung airway Db NP366-74CD8+ T cell populations in SDR-MEM mice. This study demonstrates that the experience of repeated social defeat prior to a primary viral infection significantly enhances virus-specific memory via augmentation of memory T cell populations and suggests that social stressors should be carefully considered in the design and analysis of future studies on antiviral immunity.
Original language | English (US) |
---|---|
Pages (from-to) | 2014-2025 |
Number of pages | 12 |
Journal | Journal of Immunology |
Volume | 184 |
Issue number | 4 |
DOIs | |
State | Published - Feb 15 2010 |
Externally published | Yes |