Influence of fuel properties on GDI PM emissions over first 200 seconds of WLTP using an engine dynamometer and novel “virtual drivetrain” software

Noah R. Bock, William F. Northrop

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The influence of fuel properties on particulate matter (PM) emissions from a catalytic gasoline particulate filter (GPF) equipped gasoline direct injection (GDI) engine were investigated using novel “virtual drivetrain” software and an engine mated to an engine dynamometer. The virtual drivetrain software was developed in LabVIEW to operate the engine on an engine dynamometer as if it were in a vehicle undergoing a driving cycle. The software uses a physics-based approach to determine vehicle acceleration and speed based on engine load and a programed “shift” schedule to control engine speed. The software uses a control algorithm to modulate engine load and braking to match a calculated vehicle speed with the prescribed speed trace of the driving cycle of choice. The first 200 seconds of the WLTP driving cycle was tested using 6 different fuel formulations of varying volatility, aromaticity, and ethanol concentration. The first 200 seconds of the WLTP was chosen as the test condition because it is the most problematic section of the driving cycle for controlling PM emissions due to the cold start and cold drive-off. It was found that there was a strong correlation between aromaticity of the fuel and the engine-out PM emissions, with the highest emitting fuel producing more than double the mass emissions of the low PM production fuel. However, the post-GPF PM emissions depended greatly on the soot loading state of the GPF. The fuel with the highest engine-out PM emissions produced comparable post-GPF emissions to the lowest PM producing fuel over the driving cycle when the GPF was loaded over three cycles with the respective fuels. These results demonstrate the importance of GPF loading state when aftertreatment systems are used for PM reduction. It also shows that GPF control may be more important than fuel properties, and that regulatory compliance for PM can be achieved with proper GPF control calibration irrespective of fuel type.

Original languageEnglish (US)
Title of host publicationASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884034
DOIs
StatePublished - 2021
EventASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020 - Virtual, Online
Duration: Nov 4 2020Nov 6 2020

Publication series

NameASME 2020 Internal Combustion Engine Division Fall Technical Conference

Conference

ConferenceASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020
CityVirtual, Online
Period11/4/2011/6/20

Bibliographical note

Funding Information:
This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0007217.

Funding Information:
This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DEEE0007217. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Publisher Copyright:
Copyright © 2020 ASME

Keywords

  • Fuel Properties
  • Gasoline Direct Injection
  • Gasoline Particulate Filter
  • Particulate Matter
  • World-harmonized Light-duty Test Procedure

Fingerprint

Dive into the research topics of 'Influence of fuel properties on GDI PM emissions over first 200 seconds of WLTP using an engine dynamometer and novel “virtual drivetrain” software'. Together they form a unique fingerprint.

Cite this