Influence of dissolved organic carbon on methylmercury bioavailability across minnesota stream ecosystems

Martin Tsz Ki Tsui, Jacques C. Finlay

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Stream ecosystems are widely contaminated by mercury (Hg) via atmospheric transport and deposition in watersheds. Dissolved organic carbon (DOC) is well-known to be the dominant ligand for aqueous methylmercury (MeHg), the bioaccumulative form of Hg in aquatic food webs. However, it is less clear if and how the concentration and character (e.g., aromaticity) of DOC influences the availability of dissolved MeHg to stream food webs. In this work, we analyzed total-Hg and/or MeHg concentrations in water, seston, and macroinvertebrates (filter-feeding hydropsychid caddisflies), and other physiochemical properties in 30 streams along a south-north geographic gradient in eastern Minnesota that corresponds to substantial changes in dominant land cover (i.e., agriculture, urban, wetland, and forest). In general, MeHg concentrations in seston and hydropsychids were higher in watersheds with more forest and wetland coverage, and increased with dissolved MeHg concentration. However, we found that the efficiency of MeHg incorporation into the stream food webs (i.e., bioconcentration factors of MeHg in both seston and hydropsychids, BCF MeHg = solid MeHg dissolved MeHg) decreased significantly with DOC concentration and aromaticity, suggesting that MeHg bioavailability to the base of food webs was attenuated at higher levels of terrestrial DOC. Therefore, our findings suggest that there is a dual role of DOC on MeHg cycling in streams: terrestrial DOC acts as the primary carrier ligand of dissolved MeHg for transport into surface waters, yet this aromatic DOC also attenuates dissolved MeHg uptake by aquatic food webs. Thus, consideration of MeHg bioavailability and its environmental regulation could help improve predictive models of MeHg bioaccumulation in stream ecosystems.

Original languageEnglish (US)
Pages (from-to)5981-5987
Number of pages7
JournalEnvironmental Science and Technology
Volume45
Issue number14
DOIs
StatePublished - Jul 15 2011

Fingerprint

Dive into the research topics of 'Influence of dissolved organic carbon on methylmercury bioavailability across minnesota stream ecosystems'. Together they form a unique fingerprint.

Cite this