Abstract
Inference of space-time signals evolving over graphs emerges naturally in a number of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filtering approach that leverages the spatio-temporal dynamics to allow for efficient online reconstruction, while also coping with dynamically evolving network topologies. Laplacian kernels are employed to perform kriging over the graph when spatial second-order statistics are unknown, as is often the case. Numerical tests with synthetic and real data illustrate the superior reconstruction performance of the proposed approach.
Original language | English (US) |
---|---|
Title of host publication | 25th European Signal Processing Conference, EUSIPCO 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1679-1683 |
Number of pages | 5 |
ISBN (Electronic) | 9780992862671 |
DOIs | |
State | Published - Oct 23 2017 |
Event | 25th European Signal Processing Conference, EUSIPCO 2017 - Kos, Greece Duration: Aug 28 2017 → Sep 2 2017 |
Publication series
Name | 25th European Signal Processing Conference, EUSIPCO 2017 |
---|---|
Volume | 2017-January |
Other
Other | 25th European Signal Processing Conference, EUSIPCO 2017 |
---|---|
Country/Territory | Greece |
City | Kos |
Period | 8/28/17 → 9/2/17 |
Bibliographical note
Publisher Copyright:© EURASIP 2017.
Keywords
- Graph signal reconstruction
- Kriged Kalman filtering
- Laplacian kernels
- Time series on graphs