Inertially aided vector matching for opportunistic navigation in space

Joel Runnels, Demoz Gebre-Egziabher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

In this work, an estimator is developed for the joint estimation of orientation and position from astrophysical signals of opportunity, particularly pulsars. The filter is based on a combination of vector-matching techniques for estimating attitude and time-difference of arrival navigation for estimating position. The filter functions by computing the probability of association for each arriving photon with each signal source of interest, and using the association probabilities to perform the measurement update. The probability of association of a photon with a signal source is derived, as well as the probability of association with background. The estimation techniques proposed are tested using Monte Carlo analysis techniques. The accuracy of the resulting estimates is compared to other pulsar navigation techniques. The results of the simulation studies indicate that the technique proposed here generally outperforms other time difference of arrival estimation techniques.

Original languageEnglish (US)
Title of host publication68th International Astronautical Congress, IAC 2017
Subtitle of host publicationUnlocking Imagination, Fostering Innovation and Strengthening Security
PublisherInternational Astronautical Federation, IAF
Pages4944-4958
Number of pages15
ISBN (Print)9781510855373
StatePublished - 2017
Event68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017 - Adelaide, Australia
Duration: Sep 25 2017Sep 29 2017

Publication series

NameProceedings of the International Astronautical Congress, IAC
Volume8
ISSN (Print)0074-1795

Other

Other68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017
Country/TerritoryAustralia
CityAdelaide
Period9/25/179/29/17

Bibliographical note

Publisher Copyright:
Copyright © 2017 by the International Astronautical Federation (IAF). All rights reserved.

Keywords

  • Data association
  • Opportunistic navigation

Fingerprint

Dive into the research topics of 'Inertially aided vector matching for opportunistic navigation in space'. Together they form a unique fingerprint.

Cite this