Induced fit and the catalytic mechanism of isocitrate dehydrogenase

Susana Gonçalves, Stephen P. Miller, Maria A. Carrondo, Anthony M. Dean, Pedro M. Matias

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


NADP+ dependent isocitrate dehydrogenase (IDH; EC belongs to a large family of α-hydroxyacid oxidative β-decarboxylases that catalyze similar three-step reactions, with dehydrogenation to an oxaloacid intermediate preceding β-decarboxylation to an enol intermediate followed by tautomerization to the final α-ketone product. A comprehensive view of the induced fit needed for catalysis is revealed on comparing the first "fully closed" crystal structures of a pseudo-Michaelis complex of wild-type Escherichia coli IDH (EcoIDH) and the "fully closed" reaction product complex of the K100M mutant with previously obtained "quasi-closed" and "open" conformations. Conserved catalytic residues, binding the nicotinamide ring of NADP+ and the metal-bound substrate, move as rigid bodies during domain closure by a hinge motion that spans the central β-sheet in each monomer. Interactions established between Thr105 and Ser113, which flank the "phosphorylation loop", and the nicotinamide mononucleotide moiety of NADP+ establish productive coenzyme binding. Electrostatic interactions of a Lys100-Leu103-Asn115-Glu336 tetrad play a pivotal role in assembling a catalytically competent active site. As predicted, Lys230* is positioned to deprotonate/reprotonate the α-hydroxyl in both reaction steps and Tyr160 moves into position to protonate C3 following β-decarboxylation. A proton relay from the catalytic triad Tyr160-Asp307-Lys230* connects the α-hydroxyl of isocitrate to the bulk solvent to complete the picture of the catalytic mechanism.

Original languageEnglish (US)
Pages (from-to)7098-7115
Number of pages18
Issue number36
StatePublished - Sep 11 2012


Dive into the research topics of 'Induced fit and the catalytic mechanism of isocitrate dehydrogenase'. Together they form a unique fingerprint.

Cite this