TY - JOUR
T1 - Indentation of rock by wedge-shaped tools
AU - Chen, L. H.
AU - Labuz, J. F.
PY - 2006/10/1
Y1 - 2006/10/1
N2 - This paper presents the experimental results obtained with a two-dimensional indentation device controlled by a servo-hydraulic loading system and monitored with the nondestructive techniques of acoustic emission and electronic speckle pattern interferometry. The goals of this research were to evaluate the indentation pressure as well as the size of a damage (plastic) zone, and to study the initiation of tensile fracture at the intact rock-damaged rock boundary, that is, the elasto-plastic interface. The key factors controlling the failure process are (1) the mechanical properties of the rock including the elasticity and strength parameters, (2) the geometric features of the tool such as the wedge angle, and (3) the lateral confinement simulating the far-field stress. A good agreement with regard to indentation pressure and damage-zone radius was found between the experimental and theoretical analyses. Furthermore, the intrinsic crack length, critical in establishing tensile fracture, was estimated and correlated to the grain size.
AB - This paper presents the experimental results obtained with a two-dimensional indentation device controlled by a servo-hydraulic loading system and monitored with the nondestructive techniques of acoustic emission and electronic speckle pattern interferometry. The goals of this research were to evaluate the indentation pressure as well as the size of a damage (plastic) zone, and to study the initiation of tensile fracture at the intact rock-damaged rock boundary, that is, the elasto-plastic interface. The key factors controlling the failure process are (1) the mechanical properties of the rock including the elasticity and strength parameters, (2) the geometric features of the tool such as the wedge angle, and (3) the lateral confinement simulating the far-field stress. A good agreement with regard to indentation pressure and damage-zone radius was found between the experimental and theoretical analyses. Furthermore, the intrinsic crack length, critical in establishing tensile fracture, was estimated and correlated to the grain size.
KW - Acoustic emission
KW - Cavity expansion model
KW - Crack propagation
KW - Speckle interferometry
KW - Wedge indentation
UR - http://www.scopus.com/inward/record.url?scp=33745267252&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745267252&partnerID=8YFLogxK
U2 - 10.1016/j.ijrmms.2006.03.005
DO - 10.1016/j.ijrmms.2006.03.005
M3 - Article
AN - SCOPUS:33745267252
VL - 43
SP - 1023
EP - 1033
JO - International Journal of Rock Mechanics and Mining Sciences
JF - International Journal of Rock Mechanics and Mining Sciences
SN - 1365-1609
IS - 7
ER -