TY - JOUR
T1 - Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change
AU - Wythers, Kirk R.
AU - Reich, Peter B.
AU - Bradford, John B.
PY - 2013/3/1
Y1 - 2013/3/1
N2 - Evidence suggests that respiration acclimation (RA) to temperature in plants can have a substantial influence on ecosystem carbon balance. To assess the influence of RA on ecosystem response variables in the presence of global change drivers, we incorporated a temperature-sensitive Q10 of respiration and foliar basal RA into the ecosystem model PnET-CN. We examined the new algorithms' effects on modeled net primary production (NPP), total canopy foliage mass, foliar nitrogen concentration, net ecosystem exchange (NEE), and ecosystem respiration/gross primary production ratios. This latter ratio more closely matched eddy covariance long-term data when RA was incorporated in the model than when not. Averaged across four boreal ecotone sites and three forest types at year 2100, the enhancement of NPP in response to the combination of rising [CO2] and warming was 9% greater when RA algorithms were used, relative to responses using fixed respiration parameters. The enhancement of NPP response to global change was associated with concomitant changes in foliar nitrogen and foliage mass. In addition, impacts of RA algorithms on modeled responses of NEE closely paralleled impacts on NPP. These results underscore the importance of incorporating temperature-sensitive Q 10 and basal RA algorithms into ecosystem models. Given the current evidence that atmospheric [CO2] and surface temperature will continue to rise, and that ecosystem responses to those changes appear to be modified by RA, which is a common phenotypic adjustment, the potential for misleading results increases if models fail to incorporate RA into their carbon balance calculations.
AB - Evidence suggests that respiration acclimation (RA) to temperature in plants can have a substantial influence on ecosystem carbon balance. To assess the influence of RA on ecosystem response variables in the presence of global change drivers, we incorporated a temperature-sensitive Q10 of respiration and foliar basal RA into the ecosystem model PnET-CN. We examined the new algorithms' effects on modeled net primary production (NPP), total canopy foliage mass, foliar nitrogen concentration, net ecosystem exchange (NEE), and ecosystem respiration/gross primary production ratios. This latter ratio more closely matched eddy covariance long-term data when RA was incorporated in the model than when not. Averaged across four boreal ecotone sites and three forest types at year 2100, the enhancement of NPP in response to the combination of rising [CO2] and warming was 9% greater when RA algorithms were used, relative to responses using fixed respiration parameters. The enhancement of NPP response to global change was associated with concomitant changes in foliar nitrogen and foliage mass. In addition, impacts of RA algorithms on modeled responses of NEE closely paralleled impacts on NPP. These results underscore the importance of incorporating temperature-sensitive Q 10 and basal RA algorithms into ecosystem models. Given the current evidence that atmospheric [CO2] and surface temperature will continue to rise, and that ecosystem responses to those changes appear to be modified by RA, which is a common phenotypic adjustment, the potential for misleading results increases if models fail to incorporate RA into their carbon balance calculations.
KW - climate change
KW - ecosystem model
KW - foliar respiration acclimation
KW - forest productivity
UR - http://www.scopus.com/inward/record.url?scp=84880094169&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880094169&partnerID=8YFLogxK
U2 - 10.1029/2011JG001897
DO - 10.1029/2011JG001897
M3 - Article
AN - SCOPUS:84880094169
SN - 2169-8953
VL - 118
SP - 77
EP - 90
JO - Journal of Geophysical Research: Biogeosciences
JF - Journal of Geophysical Research: Biogeosciences
IS - 1
ER -