In vivo oxidative metabolism of a major peroxidation-derived DNA adduct, M1dG

Michael B. Otteneder, Charles G. Knutson, J. Scott Daniels, Muhammed Hashim, Brenda C. Crews, Rory P Remmel, Hao Wang, Carmelo Rizzo, Lawrence J. Marnett

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

3-(2-Deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α] purin-10(3H)-one (M1dG) is a DNA adduct arising from the reaction of 2-deoxyguanosine with the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacteria and mammalian cells and is present in the genomic DNA of healthy human beings. It is also detectable, albeit at low levels, in the urine of healthy individuals, which may make it a useful biomarker of DNA damage linked to oxidative stress. We investigated the possibility that the low urinary levels of M1dG reflect metabolic conversion to derivatives. M1dG was rapidly removed from plasma (t1/2 = 10 min) after i.v. administration to rats. A single urinary metabolite was detected that was identified as 6-oxo-M1dG by MS, NMR spectroscopy, and independent chemical synthesis. 6-OxO-M1dG was generated in vitro by incubation of M1dG with rat liver cytosols, and studies with inhibitors suggested that xanthine oxidase and aldehyde oxidase are involved in the oxidative metabolism. M1dG also was metabolized by three separate human liver cytosol preparations, indicating 6-oxo-M1dG is a likely metabolite in humans. This represents a report of the oxidative metabolism of an endogenous DNA adduct and raises the possibility that other endogenous DNA adduces are metabolized by oxidative pathways. 6-Oxo-M1dG may be a useful biomarker of endogenous DNA damage associated with inflammation, oxidative stress, and certain types of cancer chemotherapy.

Original languageEnglish (US)
Pages (from-to)6665-6669
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume103
Issue number17
DOIs
StatePublished - Apr 25 2006

Fingerprint

DNA Adducts
Cytosol
DNA Damage
DNA
Oxidative Stress
Biomarkers
Aldehyde Oxidase
Deoxyguanosine
Xanthine Oxidase
Liver
Malondialdehyde
Lipid Peroxidation
Magnetic Resonance Spectroscopy
Urine
Inflammation
Bacteria
Drug Therapy
Neoplasms

Keywords

  • DNA damage
  • Excretion
  • Inflammation
  • Metabolite
  • Oxidation

Cite this

In vivo oxidative metabolism of a major peroxidation-derived DNA adduct, M1dG. / Otteneder, Michael B.; Knutson, Charles G.; Daniels, J. Scott; Hashim, Muhammed; Crews, Brenda C.; Remmel, Rory P; Wang, Hao; Rizzo, Carmelo; Marnett, Lawrence J.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 17, 25.04.2006, p. 6665-6669.

Research output: Contribution to journalArticle

Otteneder, MB, Knutson, CG, Daniels, JS, Hashim, M, Crews, BC, Remmel, RP, Wang, H, Rizzo, C & Marnett, LJ 2006, 'In vivo oxidative metabolism of a major peroxidation-derived DNA adduct, M1dG', Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 17, pp. 6665-6669. https://doi.org/10.1073/pnas.0602017103
Otteneder, Michael B. ; Knutson, Charles G. ; Daniels, J. Scott ; Hashim, Muhammed ; Crews, Brenda C. ; Remmel, Rory P ; Wang, Hao ; Rizzo, Carmelo ; Marnett, Lawrence J. / In vivo oxidative metabolism of a major peroxidation-derived DNA adduct, M1dG. In: Proceedings of the National Academy of Sciences of the United States of America. 2006 ; Vol. 103, No. 17. pp. 6665-6669.
@article{4c8ad2bc83524e83b5243a85ac8c0a27,
title = "In vivo oxidative metabolism of a major peroxidation-derived DNA adduct, M1dG",
abstract = "3-(2-Deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α] purin-10(3H)-one (M1dG) is a DNA adduct arising from the reaction of 2-deoxyguanosine with the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacteria and mammalian cells and is present in the genomic DNA of healthy human beings. It is also detectable, albeit at low levels, in the urine of healthy individuals, which may make it a useful biomarker of DNA damage linked to oxidative stress. We investigated the possibility that the low urinary levels of M1dG reflect metabolic conversion to derivatives. M1dG was rapidly removed from plasma (t1/2 = 10 min) after i.v. administration to rats. A single urinary metabolite was detected that was identified as 6-oxo-M1dG by MS, NMR spectroscopy, and independent chemical synthesis. 6-OxO-M1dG was generated in vitro by incubation of M1dG with rat liver cytosols, and studies with inhibitors suggested that xanthine oxidase and aldehyde oxidase are involved in the oxidative metabolism. M1dG also was metabolized by three separate human liver cytosol preparations, indicating 6-oxo-M1dG is a likely metabolite in humans. This represents a report of the oxidative metabolism of an endogenous DNA adduct and raises the possibility that other endogenous DNA adduces are metabolized by oxidative pathways. 6-Oxo-M1dG may be a useful biomarker of endogenous DNA damage associated with inflammation, oxidative stress, and certain types of cancer chemotherapy.",
keywords = "DNA damage, Excretion, Inflammation, Metabolite, Oxidation",
author = "Otteneder, {Michael B.} and Knutson, {Charles G.} and Daniels, {J. Scott} and Muhammed Hashim and Crews, {Brenda C.} and Remmel, {Rory P} and Hao Wang and Carmelo Rizzo and Marnett, {Lawrence J.}",
year = "2006",
month = "4",
day = "25",
doi = "10.1073/pnas.0602017103",
language = "English (US)",
volume = "103",
pages = "6665--6669",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "17",

}

TY - JOUR

T1 - In vivo oxidative metabolism of a major peroxidation-derived DNA adduct, M1dG

AU - Otteneder, Michael B.

AU - Knutson, Charles G.

AU - Daniels, J. Scott

AU - Hashim, Muhammed

AU - Crews, Brenda C.

AU - Remmel, Rory P

AU - Wang, Hao

AU - Rizzo, Carmelo

AU - Marnett, Lawrence J.

PY - 2006/4/25

Y1 - 2006/4/25

N2 - 3-(2-Deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α] purin-10(3H)-one (M1dG) is a DNA adduct arising from the reaction of 2-deoxyguanosine with the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacteria and mammalian cells and is present in the genomic DNA of healthy human beings. It is also detectable, albeit at low levels, in the urine of healthy individuals, which may make it a useful biomarker of DNA damage linked to oxidative stress. We investigated the possibility that the low urinary levels of M1dG reflect metabolic conversion to derivatives. M1dG was rapidly removed from plasma (t1/2 = 10 min) after i.v. administration to rats. A single urinary metabolite was detected that was identified as 6-oxo-M1dG by MS, NMR spectroscopy, and independent chemical synthesis. 6-OxO-M1dG was generated in vitro by incubation of M1dG with rat liver cytosols, and studies with inhibitors suggested that xanthine oxidase and aldehyde oxidase are involved in the oxidative metabolism. M1dG also was metabolized by three separate human liver cytosol preparations, indicating 6-oxo-M1dG is a likely metabolite in humans. This represents a report of the oxidative metabolism of an endogenous DNA adduct and raises the possibility that other endogenous DNA adduces are metabolized by oxidative pathways. 6-Oxo-M1dG may be a useful biomarker of endogenous DNA damage associated with inflammation, oxidative stress, and certain types of cancer chemotherapy.

AB - 3-(2-Deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α] purin-10(3H)-one (M1dG) is a DNA adduct arising from the reaction of 2-deoxyguanosine with the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacteria and mammalian cells and is present in the genomic DNA of healthy human beings. It is also detectable, albeit at low levels, in the urine of healthy individuals, which may make it a useful biomarker of DNA damage linked to oxidative stress. We investigated the possibility that the low urinary levels of M1dG reflect metabolic conversion to derivatives. M1dG was rapidly removed from plasma (t1/2 = 10 min) after i.v. administration to rats. A single urinary metabolite was detected that was identified as 6-oxo-M1dG by MS, NMR spectroscopy, and independent chemical synthesis. 6-OxO-M1dG was generated in vitro by incubation of M1dG with rat liver cytosols, and studies with inhibitors suggested that xanthine oxidase and aldehyde oxidase are involved in the oxidative metabolism. M1dG also was metabolized by three separate human liver cytosol preparations, indicating 6-oxo-M1dG is a likely metabolite in humans. This represents a report of the oxidative metabolism of an endogenous DNA adduct and raises the possibility that other endogenous DNA adduces are metabolized by oxidative pathways. 6-Oxo-M1dG may be a useful biomarker of endogenous DNA damage associated with inflammation, oxidative stress, and certain types of cancer chemotherapy.

KW - DNA damage

KW - Excretion

KW - Inflammation

KW - Metabolite

KW - Oxidation

UR - http://www.scopus.com/inward/record.url?scp=33646237137&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646237137&partnerID=8YFLogxK

U2 - 10.1073/pnas.0602017103

DO - 10.1073/pnas.0602017103

M3 - Article

C2 - 16614064

AN - SCOPUS:33646237137

VL - 103

SP - 6665

EP - 6669

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 17

ER -