In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis

Stephen C.M.D. Kaufman, Jeffery A. Laird, Roger W. Beuerman

Research output: Chapter in Book/Report/Conference proceedingConference contribution


The white-light confocal microscope offers an in vivo, cellular-level resolution view of the cornea. This instrument has proven to be a valuable research and diagnostic tool for the study of infectious keratitis. In this study, we investigate the direct visualization of herpes simplex virus type 1 (HSV-1)-infected corneal epithelium, with in vivo confocal microscopy, using HSV-1 immunofluorescent antibodies. New Zealand white rabbits were infected with McKrae strain of HSV-1 in one eye; the other eye of each rabbit was used as an uninfected control. Four days later, the rabbits were anesthetized and a cellulose sponge was applied to each cornea, and a drop of direct HSV fluorescein-tagged antibody was placed on each sponge every 3 to 5 minutes for 1 hour. Fluorescence confocal microscopy was then performed. The HSV-infected corneas showed broad regions of hyperfluorescent epithelial cells. The uninfected corneas revealed no background fluorescence. Thus, using the confocal microscope with a fluorescent cube, we were able to visualize HSV-infected corneal epithelial cells tagged with a direct fluorescent antibody. This process may prove to be a useful clinical tool for the in vivo diagnosis of HSV keratitis.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
EditorsJean-Marie Parel, Karen M. Joos, Pascal O. Rol
Number of pages4
StatePublished - Jan 1 1996
Externally publishedYes
EventOphthalmic Technologies VI - San Jose, CA, USA
Duration: Jan 27 1996Jan 28 1996

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering


ConferenceOphthalmic Technologies VI
CitySan Jose, CA, USA


Dive into the research topics of 'In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis'. Together they form a unique fingerprint.

Cite this