In-vivo cortical thickness estimation from high-resolution T1w MRI scans in healthy and mucopolysaccharidosis affected dogs

Rene Labounek, Khoi Mai, Bryon Mueller, N. Matthew Ellinwood, Patricia DIckson, Igor Nestrasil

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Cortical thickness measurement estimated from high-resolution anatomical MRI scans may serve as a marker of cortical atrophy in clinical research applications. Most of the working algorithms and pipelines are optimized for human in-vivo data analyses that offer robust and reproducible measures. As animal-models are widely utilized in many preclinical phases of clinical trials the need for an optimized automated MRI data analysis to yield reliable data is warranted. We present a processing pipeline optimized for cortical thickness estimation of canine brains in native and template spaces. Preliminary results of 5 healthy and 5 mucopolysaccharidosis (MPS) dogs demonstrate single-canine mean/median cortical thickness in range of 2.69-3.58mm in native space and 3.26-4.15mm in template space. Our MRI generated values exceed previous histological measurements (observed mean about 2mm) in limited literature reports. Randomly selected manual measures corroborated the ranges defined by estimated cortical thickness probability density functions. Geometric transformations between native and template spaces change absolute mean/median cortical thickness values, but do not change the data nature and properties since the Pearson correlation coefficients between different space estimates were 0.84 for mean values and 0.89 for median values. No significant difference in total cortical thickness between MPS and age-and gender-matched dogs was observed.

Original languageEnglish (US)
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2848-2851
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: Jul 23 2019Jul 27 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
CountryGermany
CityBerlin
Period7/23/197/27/19

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

Fingerprint Dive into the research topics of 'In-vivo cortical thickness estimation from high-resolution T<sub>1</sub>w MRI scans in healthy and mucopolysaccharidosis affected dogs'. Together they form a unique fingerprint.

  • Cite this

    Labounek, R., Mai, K., Mueller, B., Ellinwood, N. M., DIckson, P., & Nestrasil, I. (2019). In-vivo cortical thickness estimation from high-resolution T1w MRI scans in healthy and mucopolysaccharidosis affected dogs. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 (pp. 2848-2851). [8856826] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2019.8856826