In vivo and in vitro infection dynamics of honey bee viruses

Jimena Carrillo-Tripp, Adam G. Dolezal, Michael J. Goblirsch, W. Allen Miller, Amy L. Toth, Bryony C. Bonning

Research output: Contribution to journalArticlepeer-review

84 Scopus citations


The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.

Original languageEnglish (US)
Article number22265
JournalScientific reports
StatePublished - 2016

Bibliographical note

Funding Information:
We thank Drs. Tim Kurtti and Marla Spivak for access to the AmE-711 cell line, and Dr. Diana Cox-Foster for provision of honey bees infected with KBV. We gratefully acknowledge Shawna Snyder for the illustration of caged bees. This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2012-67013-19295.


Dive into the research topics of 'In vivo and in vitro infection dynamics of honey bee viruses'. Together they form a unique fingerprint.

Cite this