TY - JOUR
T1 - In-season dynamic diagnosis of maize nitrogen status across the growing season by integrating proximal sensing and crop growth modeling
AU - Dong, Lingwei
AU - Miao, Yuxin
AU - Wang, Xinbing
AU - Kusnierek, Krzysztof
AU - Zha, Hainie
AU - Pan, Min
AU - Batchelor, William D.
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/9
Y1 - 2024/9
N2 - Efficient and accurate in-season diagnosis of crop nitrogen (N) status is crucially important for precision N management. The main objective of this study was to develop a strategy for in-season dynamic diagnosis of maize (Zea mays L.) N status across the growing season by integrating proximal sensing and crop growth modeling. In this study, we integrated plant N concentration (PNC) derived from leaf fluorescence sensor data and aboveground biomass (AGB) based on the best-performing spectral index calculated from active canopy reflectance sensor data with simulated PNC and AGB using a crop growth model, DSSAT-CERES-Maize, for dynamic in-season maize N status diagnosis across the growing season. The results confirmed the applicability of leaf fluorescence sensing for PNC estimation and active canopy reflectance sensing for AGB estimation, respectively. The calibrated DSSAT CERES-Maize model performed well for simulating AGB (R2 = 0.96), which could be used for calculating the N status indicator, N nutrition index (NNI). However, the model did not perform satisfactorily for PNC simulation, with significant discrepancies between the simulated and measured PNC values. The data integration method using both proximal sensing and crop growth modeling produced accurate predictions of NNI (R2 = 0.95) and N status diagnostic outcomes (Kappa statistics = 0.64) for key growth stages in this study and could be used to simulate maize N status across the growing season, showing the potential for in-season dynamic N status diagnosis and management decision support. More studies are needed to further improve this approach by multi-sensor and multi-source data fusion using machine learning models.
AB - Efficient and accurate in-season diagnosis of crop nitrogen (N) status is crucially important for precision N management. The main objective of this study was to develop a strategy for in-season dynamic diagnosis of maize (Zea mays L.) N status across the growing season by integrating proximal sensing and crop growth modeling. In this study, we integrated plant N concentration (PNC) derived from leaf fluorescence sensor data and aboveground biomass (AGB) based on the best-performing spectral index calculated from active canopy reflectance sensor data with simulated PNC and AGB using a crop growth model, DSSAT-CERES-Maize, for dynamic in-season maize N status diagnosis across the growing season. The results confirmed the applicability of leaf fluorescence sensing for PNC estimation and active canopy reflectance sensing for AGB estimation, respectively. The calibrated DSSAT CERES-Maize model performed well for simulating AGB (R2 = 0.96), which could be used for calculating the N status indicator, N nutrition index (NNI). However, the model did not perform satisfactorily for PNC simulation, with significant discrepancies between the simulated and measured PNC values. The data integration method using both proximal sensing and crop growth modeling produced accurate predictions of NNI (R2 = 0.95) and N status diagnostic outcomes (Kappa statistics = 0.64) for key growth stages in this study and could be used to simulate maize N status across the growing season, showing the potential for in-season dynamic N status diagnosis and management decision support. More studies are needed to further improve this approach by multi-sensor and multi-source data fusion using machine learning models.
KW - Crop growth model
KW - Data integration
KW - Nitrogen nutrition index
KW - Nitrogen status
KW - Proximal sensing
UR - http://www.scopus.com/inward/record.url?scp=85198278649&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198278649&partnerID=8YFLogxK
U2 - 10.1016/j.compag.2024.109240
DO - 10.1016/j.compag.2024.109240
M3 - Article
AN - SCOPUS:85198278649
SN - 0168-1699
VL - 224
JO - Computers and Electronics in Agriculture
JF - Computers and Electronics in Agriculture
M1 - 109240
ER -