TY - JOUR
T1 - Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure
AU - Metzger, Anja K.
AU - Herman, Margot
AU - McKnite, Scott
AU - Tang, Wanchun
AU - Yannopoulos, Demetris
PY - 2012/6
Y1 - 2012/6
N2 - Objective: Generation of negative intrathoracic pressure during the decompression phase of cardiopulmonary resuscitation enhances the refilling of the heart. We tested the hypothesis that when compared with closed-chest manual compressions at 80 chest compressions per min, treatment with active compression-decompression cardiopulmonary resuscitation at 80 chest compressions/min combined with augmentation of negative intrathoracic pressure would lower intracranial pressure and increase cerebral perfusion, thereby improving neurologically intact survival rates following prolonged untreated cardiac arrest. Design: Prospective, randomized animal study. Setting: Animal laboratory facilities. Subjects: A total of 26 female farm pigs in two different protocols (n = 17 and n = 9). Interventions, Measurements, and Main Results: Seventeen pigs were subjected to 8.5 mins of untreated ventricular fibrillation and prospectively randomized to cardiopulmonary resuscitation at 80 chest compressions/min or active compression-decompression cardiopulmonary resuscitation at 80 chest compressions/min plus an impedance threshold device. Coronary perfusion pressures (29.5 ± 2.7 mm Hg vs. 22.4 ± 1.6 mm Hg, p = .03), carotid blood flow (44.0 ± 12.2 vs. 30.9 ± 10.4, p = .03), and 24-hr neurological survival (88% vs. 22%, p = .015) were higher with active compression-decompression cardiopulmonary resuscitation + an impedance threshold device. Cerebral perfusion pressures, measured in nine additional pigs, were improved with active compression-decompression cardiopulmonary resuscitation + an impedance threshold device (21.9 ± 1.2 mm Hg vs. 8.9 ± 0.8 mm Hg, p < .0001). With active compression-decompression cardiopulmonary resuscitation + impedance threshold device, mean diastolic intracranial pressure during decompression was lower (12.2 ± 0.2 mm Hg vs. 16.6 ± 1.2 mm Hg, p = .02) and the downward slope of the decompression phase intracranial pressure curve was steeper (-60.3 ± 12.9 mm Hg vs.-46.7 ± 11.1 mm Hg/sec, p < .001). Conclusions: Active compression-decompression cardiopulmonary resuscitation + an impedance threshold device increased cerebral perfusion pressures and lowered diastolic intracranial pressure and intracranial pressure rate during the decompression phase. These mechanisms may underlie the observed increase in cerebral perfusion pressure, carotid blood flow, and survival rates with favorable neurologic outcomes in this pig model of cardiac arrest.
AB - Objective: Generation of negative intrathoracic pressure during the decompression phase of cardiopulmonary resuscitation enhances the refilling of the heart. We tested the hypothesis that when compared with closed-chest manual compressions at 80 chest compressions per min, treatment with active compression-decompression cardiopulmonary resuscitation at 80 chest compressions/min combined with augmentation of negative intrathoracic pressure would lower intracranial pressure and increase cerebral perfusion, thereby improving neurologically intact survival rates following prolonged untreated cardiac arrest. Design: Prospective, randomized animal study. Setting: Animal laboratory facilities. Subjects: A total of 26 female farm pigs in two different protocols (n = 17 and n = 9). Interventions, Measurements, and Main Results: Seventeen pigs were subjected to 8.5 mins of untreated ventricular fibrillation and prospectively randomized to cardiopulmonary resuscitation at 80 chest compressions/min or active compression-decompression cardiopulmonary resuscitation at 80 chest compressions/min plus an impedance threshold device. Coronary perfusion pressures (29.5 ± 2.7 mm Hg vs. 22.4 ± 1.6 mm Hg, p = .03), carotid blood flow (44.0 ± 12.2 vs. 30.9 ± 10.4, p = .03), and 24-hr neurological survival (88% vs. 22%, p = .015) were higher with active compression-decompression cardiopulmonary resuscitation + an impedance threshold device. Cerebral perfusion pressures, measured in nine additional pigs, were improved with active compression-decompression cardiopulmonary resuscitation + an impedance threshold device (21.9 ± 1.2 mm Hg vs. 8.9 ± 0.8 mm Hg, p < .0001). With active compression-decompression cardiopulmonary resuscitation + impedance threshold device, mean diastolic intracranial pressure during decompression was lower (12.2 ± 0.2 mm Hg vs. 16.6 ± 1.2 mm Hg, p = .02) and the downward slope of the decompression phase intracranial pressure curve was steeper (-60.3 ± 12.9 mm Hg vs.-46.7 ± 11.1 mm Hg/sec, p < .001). Conclusions: Active compression-decompression cardiopulmonary resuscitation + an impedance threshold device increased cerebral perfusion pressures and lowered diastolic intracranial pressure and intracranial pressure rate during the decompression phase. These mechanisms may underlie the observed increase in cerebral perfusion pressure, carotid blood flow, and survival rates with favorable neurologic outcomes in this pig model of cardiac arrest.
KW - cardiac arrest
KW - cardiopulmonary resuscitation
KW - cerebrovascular circulation
KW - intracranial pressure
KW - intrathoracic pressure perfusion
UR - http://www.scopus.com/inward/record.url?scp=84861528853&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861528853&partnerID=8YFLogxK
U2 - 10.1097/CCM.0b013e318246b9ad
DO - 10.1097/CCM.0b013e318246b9ad
M3 - Article
C2 - 22487997
AN - SCOPUS:84861528853
SN - 0090-3493
VL - 40
SP - 1851
EP - 1856
JO - Critical care medicine
JF - Critical care medicine
IS - 6
ER -