Abstract
Large multi-agent systems such as crowds involve inter-agent interactions that are typically anticipatory in nature, depending strongly on both the positions and the velocities of agents. We show how the nonlinear, anticipatory forces seen in multi-agent systems can be made compatible with recent work on energy-based formulations in physics-based animation, and propose a simple and effective optimization-based integration scheme for implicit integration of such systems. We apply this approach to crowd simulation by using a state-of-the-art model derived from a recent analysis of human crowd data, and adapting it to our framework. Our approach provides, for the first time, guaranteed collision-free motion while simultaneously maintaining high-quality collective behavior in a way that is insensitive to simulation parameters such as time step size and crowd density. These benefits are demonstrated through simulation results on various challenging scenarios and validation against real-world crowd data.
Original language | English (US) |
---|---|
Article number | 136 |
Journal | ACM Transactions on Graphics |
Volume | 36 |
Issue number | 4 |
DOIs | |
State | Published - 2017 |
Event | ACM SIGGRAPH 2017 - Los Angeles, United States Duration: Jul 30 2017 → Aug 3 2017 |
Bibliographical note
Publisher Copyright:© 2017 Copyright held by the owner/author(s).
Keywords
- Crowd simulation
- Implicit integration
- Physics-based animation