Abstract
The Modified Marrone-Treanor (MMT) chemical kinetics model [1] was developed recently using ab-initio quantum chemistry data. The MMT model has been implemented into a CFD code designed for hypersonic flows, with an emphasis on vehicle-scale calculation. The current feature set includes implicit time-stepping, recombination, electronic energy, and performance comparable to the standard Park model. The effect of non-Boltzmann distributions on chemical kinetics source terms are also quantified, and a relatively simple factor is found to be suitable for correcting the reaction rate and vibrational energy change per dissociation. Larger-scale CFD results are also presented and compared to the standard Park model [2]; the peak heat flux on a Crew Exploration Vehicle (CEV) type geometry is found to be 10% higher for Park than MMT.
Original language | English (US) |
---|---|
Title of host publication | AIAA Scitech 2020 Forum |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624105951 |
DOIs | |
State | Published - 2020 |
Event | AIAA Scitech Forum, 2020 - Orlando, United States Duration: Jan 6 2020 → Jan 10 2020 |
Publication series
Name | AIAA Scitech 2020 Forum |
---|---|
Volume | 1 PartF |
Conference
Conference | AIAA Scitech Forum, 2020 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 1/6/20 → 1/10/20 |
Bibliographical note
Publisher Copyright:© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.