Abstract
Labeled datasets for semantic segmentation are imperfect, especially in medical imaging where borders are often subtle or ill-defined. Little work has been done to analyze the effect that label errors have on the performance of segmentation methodologies. Here we present a large-scale study of model performance in the presence of varying types and degrees of error in training data. We trained U-Net, SegNet, and FCN32 several times for liver segmentation with 10 different modes of ground-truth perturbation. Our results show that for each architecture, performance steadily declines with boundary-localized errors, however, U-Net was significantly more robust to jagged boundary errors than the other architectures. We also found that each architecture was very robust to non-boundary-localized errors, suggesting that boundary-localized errors are fundamentally different and more challenging problem than random label errors in a classification setting.
Original language | English (US) |
---|---|
Title of host publication | Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis - 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018 Held in Conjunction with MICCAI 2018 |
Editors | Su-Lin Lee, Emanuele Trucco, Lena Maier-Hein, Stefano Moriconi, Shadi Albarqouni, Pierre Jannin, Simone Balocco, Guillaume Zahnd, Diana Mateus, Zeike Taylor, Stefanie Demirci, Danail Stoyanov, Raphael Sznitman, Anne Martel, Veronika Cheplygina, Eric Granger, Luc Duong |
Publisher | Springer Verlag |
Pages | 112-120 |
Number of pages | 9 |
ISBN (Print) | 9783030013639 |
DOIs | |
State | Published - 2018 |
Event | 7th Joint International Workshop on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2018, and the 3rd International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2018, held in conjunction with the 21th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018 - Granada, Spain Duration: Sep 16 2018 → Sep 16 2018 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11043 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 7th Joint International Workshop on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2018, and the 3rd International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2018, held in conjunction with the 21th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018 |
---|---|
Country/Territory | Spain |
City | Granada |
Period | 9/16/18 → 9/16/18 |
Bibliographical note
Publisher Copyright:© Springer Nature Switzerland AG 2018.