Impacts of anthropogenic disturbance on body condition, survival, and site fidelity of nonbreeding Piping Plovers

Daniel Gibson, Melissa K. Chaplin, Kelsi L. Hunt, Meryl J. Friedrich, Chelsea E. Weithman, Lindsay M. Addison, Vincent Cavalieri, Scott Coleman, Francesca J. Cuthbert, James D. Fraser, Walker Golder, Doug Hoffman, Sarah M. Karpanty, Alice Van Zoeren, Daniel H. Catlin

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


The impact of habitat loss on shorebirds may be exacerbated by disturbance from human recreational use, which further reduces the amount of coastal habitat that is functionally available. This can have consequences for the condition of individual birds or for population processes, both of which should be considered in strategies to reduce conflict between shorebirds and recreational users of coastal habitat. Our objectives were to determine the associations between human recreational use, coastal habitat modifications, and Piping Plover (Charadrius melodus) body condition and demography. We monitored banded Piping Plovers throughout their annual cycle to assess variation in body condition, true survival, and site fidelity related to disturbance regimes in 8 geographically proximate, nonbreeding areas along the southeastern Atlantic Coast of North America from 2012 to 2016. Piping Plovers in disturbed sites were 7% lighter than those in less disturbed sites. Additionally, true annual survival was lower in more disturbed areas. However, site fidelity was less influenced by disturbance than were body mass and survival. Movements away from specific nonbreeding areas were uncommon, regardless of disturbance regime, but individuals that moved to new wintering locations had high probabilities of annual survival (SÌ., = 0.80) relative to their site-faithful counterparts (SÌ., = 0.67). Associations among nonbreeding conditions, body condition, and demography highlight the importance of nonbreeding habitats to annual population dynamics of migratory species. Conservation strategies for Piping Plovers that focus solely on breeding season dynamics may not account for some of the mechanisms that influence demographic rates and population trajectories.

Original languageEnglish (US)
Pages (from-to)566-580
Number of pages15
Issue number3
StatePublished - Aug 1 2018

Bibliographical note

Funding Information:
We thank Audubon North Carolina, the South Carolina and Georgia departments of Natural Resources, National Park Service, and the town of Hilton Head, South Carolina, for assistance with collecting the survey data required for these analyses. We are grateful to Janet Thibault and Felicia Sanders with the South Carolina Department of Natural Resources for their assistance with data collection. Two anonymous reviews and Scott Sillett helped with previous versions of this manuscript. We are indebted to the National Audubon Society, State University of New York College of Environmental Science and Forestry, University of Rhode Island, University of Minnesota, Environment and Climate Change Canada, Bahamas National Trust, Nebraska Game and Parks, and everyone who has ever reported a banded Piping Plover for assistance with generating the range-wide observation data, without which this study would not have been possible. Lastly, we thank Don Fraser for his tireless assistance in improving our ability to conduct research safely and eat shrimp remotely. Funding statement: The U.S. Fish and Wildlife Service (grant #F12AC1080) and Georgia Department of Natural Resources contributed funding. Banding of Great Lakes plovers was done while F.J.C. and field assistants resided at the University of Michigan Biological Station, Pellston, Michigan, and her contribution to this work was supported by the U.S. Department of Agriculture, National Institute of Food and Agriculture, Hatch Project 1007020. None of our funders required their approval of the manuscript before submission or publication. Ethics statement: This work was performed under Virginia Tech’s Institutional Animal Care and Use Committee permit number 14-003, and U.S. Fish and Wildlife Service Threatened and Endangered Species permits TE070027-0 and TE103272-3. Author contributions: D.G., M.K.C., K.L.H., M.J.F., C.E.W., J.D.F., S.M.K., and D.H.C. conceived the ideas and designed methodology; D.G., M.K.C., K.L.H., M.J.F., C.E.W., L.M.A., F.J.C., W.G., D.H., V.C., S.C., A.V.Z., and D.H.C. collected the data; D.G. analyzed the data; and D.G. and D.H.C. led the writing of the manuscript. All authors contributed critically to manuscript drafts and gave final approval for publication.

Publisher Copyright:
© 2018 American Ornithological Society.


  • Charadrius melodus
  • Nonbreeding demography
  • Piping Plover
  • anthropogenic disturbance
  • body condition
  • shorebird conservation
  • true survival


Dive into the research topics of 'Impacts of anthropogenic disturbance on body condition, survival, and site fidelity of nonbreeding Piping Plovers'. Together they form a unique fingerprint.

Cite this