Abstract
The excitability of pulmonary artery smooth muscle cells (PASMC) is regulated by potassium (K +) conductances. Although studies suggest that background K + currents carried by 2-pore domain K + channels are important regulators of resting membrane potential in PASMC, their role in human PASMC is unknown. Our study tested the hypothesis that TASK-1 leak K + channels contribute to the K + current and resting membrane potential in human PASMC. We used the whole-cell patch-clamp technique and TASK-1 small interfering RNA (siRNA). Noninactivating K + current performed by TASK-1 K + channels were identified by current characteristics and inhibition by anandamide and acidosis (pH 6.3), each resulting in significant membrane depolarization. Moreover, we showed that TASK-1 is blocked by moderate hypoxia and activated by treprostinil at clinically relevant concentrations. This is mediated via protein kinase A (PKA)-dependent phosphorylation of TASK-1. To further confirm the role of TASK-1 channels in regulation of resting membrane potential, we knocked down TASK-1 expression using TASK-1 siRNA. The knockdown of TASK-1 was reflected by a significant depolarization of resting membrane potential. Treatment of human PASMC with TASK-1 siRNA resulted in loss of sensitivity to anandamide, acidosis, alkalosis, hypoxia, and treprostinil. These results suggest that (1) TASK-1 is expressed in human PASMC; (2) TASK-1 is hypoxia-sensitive and controls the resting membrane potential, thus implicating an important role for TASK-1 K + channels in the regulation of pulmonary vascular tone; and (3) treprostinil activates TASK-1 at clinically relevant concentrations via PKA, which might represent an important mechanism underlying the vasorelaxing properties of prostanoids and their beneficial effect in vivo.
Original language | English (US) |
---|---|
Pages (from-to) | 1072-1080 |
Number of pages | 9 |
Journal | Circulation research |
Volume | 98 |
Issue number | 8 |
DOIs | |
State | Published - Apr 2006 |
Keywords
- Hypoxic pulmonary vasoconstriction
- Potassium channels
- Pulmonary circulation
- TASK-1
- Treprostinil