Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. II. Alterations in cell viability

B. J. Shenker, P. Berthold, S. Decker, J. Mayro, C. Rooney, L. Vitale, I. M. Shapiro

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The major goal of this investigation was to examine the cytotoxic properties of both HgCl2 and MeHgCl, in terms of their ability to alter human T-cell and monocyte viability. Following treatment with HgCl2 (0-20μ;g/ml) or MeHgCl (0-2μ;g/ml), there was minimal reduction in lymphocyte viability at 1-4 hr. However, after exposure to mercury for 24 hr, cell death was apparent. In comparison, monocytes exhibited significant loss of viability during the early exposure periods. MeHgCl was approximately 5-10 times more potent than HgCl2. Other indicators of cell death were also determined. Measurement of the energy charge ratio indicated profound changes in cellular energy conservation. Electron microscopic analysis of cells treated with mercury revealed early nuclear alterations characterized by hyperchromaticity, nuclear fragmentation and condensation of nucleoplasm. In concert with these nuclear changes, there was destruction of cytoplasmic organelles with loss of membrane integrity. Studies of phospholipid synthesis by mercury treated cells confirmed that there were alterations in membrane structure. Thus, there was a decrease in total phosphatide synthesis by treated cells. Moreover, monocyte phospholipid synthesis appeared to be more sensitive to the presence of mercury then lymphocytes. Finally, both forms of mercury caused a rapid and sustained elevation in the intracellular levels of Ca+plus;. These morphological and biochemical changes are consistent with the notion that mercury initiates cytotoxic changes associated with programmed cell death.

Original languageEnglish (US)
Pages (from-to)555-577
Number of pages23
JournalImmunopharmacology and Immunotoxicology
Volume14
Issue number3
DOIs
StatePublished - 1992
Externally publishedYes

Bibliographical note

Funding Information:
These studies were supported by the National Institutes of Health Grants DE 08587 and DE06014. The authors would like to thank Amy Eckert, Kristine DeBolt, Elizabeth Ruggieri and Sharon Wannberg for their expert technical assistance.

Fingerprint

Dive into the research topics of 'Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. II. Alterations in cell viability'. Together they form a unique fingerprint.

Cite this