Abstract
Imbalanced anthropogenic inputs of nitrogen (N) and phosphorus (P) have significantly increased the ratio between N and P globally, degrading ecosystem productivity and environmental quality. Lakes represent a large global nutrient sink, modifying the flow of N and P in the environment. It remains unknown, however, the relative retention of these two nutrients in global lakes and their role in the imbalance of the nutrient cycles. Here we compare the ratio between P and N in inflows and outflows of more than 5,000 lakes globally using a combination of nutrient budget model and generalized linear model. We show that over 80% of global lakes positively retain both N and P, and almost 90% of the lakes show preferential retention of P. The greater retention of P over N leads to a strong elevation in the ratios between N and P in the lake outflow, exacerbating the imbalance of N and P cycles unexpectedly and potentially leading to biodiversity losses within lakes and algal blooms in downstream N-limited coastal zones. The management of N or P in controlling lake eutrophication has long been debated. Our results suggest that eutrophication management that prioritizes the reduction of P in lakes—which causes a further decrease in P in outflows—may unintentionally aggravate N/P imbalances in global ecosystems. Our results also highlight the importance of nutrient retention stoichiometry in global lake management to benefit watershed and regional biogeochemical cycles.
Original language | English (US) |
---|---|
Pages (from-to) | 464-468 |
Number of pages | 5 |
Journal | Nature Geoscience |
Volume | 15 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2022 |
Bibliographical note
Funding Information:We thank H. Guo, Y. Qin and L. Cao for helpful discussion. We also thank High-performance Computing Platform of Peking University for providing computing resources. The present work was financially supported by National Natural Science Foundation of China (42142047 to Y.L., 51721006 to Y.L. and J.N.), Simons Foundation Postdoctoral Fellowship (645921 to G.L.B.), Simons Collaboration on Ocean Processes and Ecology (SCOPE 329108 to M.J.F.), Simons Collaboration for Computational Biogeochemical Modeling of marine Ecosystems (CBIOMES 549931 to M.J.F.), Spanish Government Grant (PID2019-110521GB-I00 and PID2020-115770RB-I00 to J.P. and J.S.) and Fundación Ramón Areces Grant (ELEMENTAL-CLIMATE to J.P. and J.S.).
Funding Information:
We thank H. Guo, Y. Qin and L. Cao for helpful discussion. We also thank High-performance Computing Platform of Peking University for providing computing resources. The present work was financially supported by National Natural Science Foundation of China (42142047 to Y.L., 51721006 to Y.L. and J.N.), Simons Foundation Postdoctoral Fellowship (645921 to G.L.B.), Simons Collaboration on Ocean Processes and Ecology (SCOPE 329108 to M.J.F.), Simons Collaboration for Computational Biogeochemical Modeling of marine Ecosystems (CBIOMES 549931 to M.J.F.), Spanish Government Grant (PID2019-110521GB-I00 and PID2020-115770RB-I00 to J.P. and J.S.) and Fundación Ramón Areces Grant (ELEMENTAL-CLIMATE to J.P. and J.S.).
Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.