Abstract
In this paper we have introduced a novel electromagnetic source imaging (ESI) technique and demonstrated its validity and excellent performance in imaging the location and extent of underlying epileptic sources in patients suffering from focal epilepsy. The proposed algorithm employs ideas from sparse signal processing literature and convex optimization theories to improve source imaging results obtained from scalp-recorded electroencephalogram (EEG). EEG source imaging results generally use subjective methods to determine the extent of the underlying brain activity. The proposed technique provides significant improvement in dealing with such shortcomings and eliminates the need for thresholding. The results of our computer simulations and clinical validation study demonstrate the excellent performance of the proposed algorithm and suggest it may become a useful tool for objectively determining the location and extent of focal epileptic activity in a noninvasive fashion.
Original language | English (US) |
---|---|
Title of host publication | 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 109-112 |
Number of pages | 4 |
ISBN (Electronic) | 9781457702204 |
DOIs | |
State | Published - Oct 13 2016 |
Event | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States Duration: Aug 16 2016 → Aug 20 2016 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2016-October |
ISSN (Print) | 1557-170X |
Other
Other | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 8/16/16 → 8/20/16 |
Bibliographical note
Funding Information:This work was supported in part by NIH EB006433 and NSF CBET-1450956 and CBET-1264782.
Publisher Copyright:
© 2016 IEEE.