TY - JOUR
T1 - Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice
AU - Judkowski, V.
AU - Pinilla, C.
AU - Schroder, K.
AU - Tucker, L.
AU - Sarvetnick, N.
AU - Wilson, D. B.
PY - 2001/1/15
Y1 - 2001/1/15
N2 - Nonobese diabetic (NOD) mice spontaneously develop insulitis and destruction of pancreatic islet β cells similar to type 1 diabetes mellitis in humans. Insulitis also occurs in the BDC2.5 TCR transgenic line of NOD mice that express the rearranged TCR α- and β-chain genes of a diabetogenic NOD CD4 T cell clone. When activated with syngeneic islet cells in culture, BDC2.5 T cells adoptively transfer disease to NOD recipients, but the identity of the islet cell Ag responsible for pathogenicity is not known. To characterize the autoantigen(s) involved, BDC2.5 T cells were used to screen a combinatorial peptide library arranged in a positional scanning format. We identified more than 100 decapeptides that stimulate these T cells at nanomolar concentrations; they are then capable of transferring disease to NOD-scid mice. Surprisingly, some of the peptides include sequences similar (8 of 10 residues) to those found within the 528-539 fragment of glutamic acid decarboxylase 65. Although this 12-mer glutamic acid decarboxylase 65 fragment is only slightly stimulatory for BDC2.5 T cells (EC50 > 100 μM), a larger 16-mer fragment, 526-541, shows activity in the low micromolar range (EC50 = 2.3 μM). Finally, T cells from prediabetic NOD mice respond spontaneously to these peptide analogs in culture; this finding validates them as being related to a critical autoantigen involved in the etiology of spontaneous diabetes and indicates that their further characterization is important for a better understanding of underlying disease mechanisms.
AB - Nonobese diabetic (NOD) mice spontaneously develop insulitis and destruction of pancreatic islet β cells similar to type 1 diabetes mellitis in humans. Insulitis also occurs in the BDC2.5 TCR transgenic line of NOD mice that express the rearranged TCR α- and β-chain genes of a diabetogenic NOD CD4 T cell clone. When activated with syngeneic islet cells in culture, BDC2.5 T cells adoptively transfer disease to NOD recipients, but the identity of the islet cell Ag responsible for pathogenicity is not known. To characterize the autoantigen(s) involved, BDC2.5 T cells were used to screen a combinatorial peptide library arranged in a positional scanning format. We identified more than 100 decapeptides that stimulate these T cells at nanomolar concentrations; they are then capable of transferring disease to NOD-scid mice. Surprisingly, some of the peptides include sequences similar (8 of 10 residues) to those found within the 528-539 fragment of glutamic acid decarboxylase 65. Although this 12-mer glutamic acid decarboxylase 65 fragment is only slightly stimulatory for BDC2.5 T cells (EC50 > 100 μM), a larger 16-mer fragment, 526-541, shows activity in the low micromolar range (EC50 = 2.3 μM). Finally, T cells from prediabetic NOD mice respond spontaneously to these peptide analogs in culture; this finding validates them as being related to a critical autoantigen involved in the etiology of spontaneous diabetes and indicates that their further characterization is important for a better understanding of underlying disease mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=0035863724&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035863724&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.166.2.908
DO - 10.4049/jimmunol.166.2.908
M3 - Article
C2 - 11145667
AN - SCOPUS:0035863724
SN - 0022-1767
VL - 166
SP - 908
EP - 917
JO - Journal of Immunology
JF - Journal of Immunology
IS - 2
ER -