Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation

Yongshu Zhang, Yu Lei, Ali Khammanivong, Mark C Herzberg

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.

Original languageEnglish (US)
Pages (from-to)3489-3494
Number of pages6
JournalInfection and Immunity
Volume72
Issue number6
DOIs
StatePublished - Jun 1 2004

Fingerprint

Streptococcus gordonii
Biofilms
Saliva
Durapatite
Tooth
Growth
Dental Plaque
Chloramphenicol O-Acetyltransferase
Polystyrenes
Operon
Genes
Libraries
Suspensions
Cats
Plasmids
RNA
Messenger RNA

Cite this

Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. / Zhang, Yongshu; Lei, Yu; Khammanivong, Ali; Herzberg, Mark C.

In: Infection and Immunity, Vol. 72, No. 6, 01.06.2004, p. 3489-3494.

Research output: Contribution to journalArticle

@article{0acb53c5454748009de09fb150cb9f57,
title = "Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation",
abstract = "Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10{\%} saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.",
author = "Yongshu Zhang and Yu Lei and Ali Khammanivong and Herzberg, {Mark C}",
year = "2004",
month = "6",
day = "1",
doi = "10.1128/IAI.72.6.3489-3494.2004",
language = "English (US)",
volume = "72",
pages = "3489--3494",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "6",

}

TY - JOUR

T1 - Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation

AU - Zhang, Yongshu

AU - Lei, Yu

AU - Khammanivong, Ali

AU - Herzberg, Mark C

PY - 2004/6/1

Y1 - 2004/6/1

N2 - Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.

AB - Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.

UR - http://www.scopus.com/inward/record.url?scp=2542545906&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2542545906&partnerID=8YFLogxK

U2 - 10.1128/IAI.72.6.3489-3494.2004

DO - 10.1128/IAI.72.6.3489-3494.2004

M3 - Article

VL - 72

SP - 3489

EP - 3494

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 6

ER -