Hybrid particle-continuum simulations of non-equilibrium hypersonic blunt body flow fields

Thomas E. Schwartzentruber, Leonardo C. Scalabrin, Iain D. Boyd

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

A modular particle-continuum (MPC) numerical method is presented which solves the Navier-Stokes (NS) equations in regions of near-equilibrium and uses the direct simulation Monte Carlo (DSMC) method where the flow is in non-equilibrium. The MPC method is designed specifically for steady-stale, hypersonic, non-equilibrium flows and couples existing, state-of-the-art DSMC and NS solvers into a single modular code. The MPC method is tested for 2D flow of N2 at various Mach numbers over a cylinder where the global Knudsen number is 0.01. For these conditions, NS simulations significantly over-predict the local shear-stress, and also over-predict the peak heating rate by 5-10% when compared with full DSMC simulations. DSMC also predicts faster wake closure and 10-15% higher temperatures in the immediate wake region. The MPC code is able to accurately reproduce DSMC flow field results, local velocity distributions, and surface properties up to 2.8 times faster than full DSMC simulations. The computational time saved by the MPC method is directly proportional to the fraction of the flow field which is in near-equilibrium. It is found that particle simulation of the shock interior is not necessary for accurate prediction of surface properties, however particle simulation of the boundary layer and near-wake region is.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
Pages2004-2017
Number of pages14
ISBN (Print)1563478153, 9781563478154
DOIs
StatePublished - 2006
Event9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings - San Francisco, CA, United States
Duration: Jun 5 2006Jun 8 2006

Publication series

NameCollection of Technical Papers - 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings
Volume3

Other

Other9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings
Country/TerritoryUnited States
CitySan Francisco, CA
Period6/5/066/8/06

Fingerprint

Dive into the research topics of 'Hybrid particle-continuum simulations of non-equilibrium hypersonic blunt body flow fields'. Together they form a unique fingerprint.

Cite this