Hybrid particle-continuum simulations of hypersonic flow over a hollow-cylinder-flare geometry

Thomas E. Schwartzentruber, Leonardo C. Scalabrin, Iain D. Boyd

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


A modular particle-continuum numerical method is used to simulate steady-state hypersonic flow over a hollow-cylinder-flare geometry. The resulting flowfield involves a mixture of rarefied nonequilibrium flow and high-density continuum flow. The hybrid particle-continuum method loosely couples direct simulation Monte Carlo and Navier-Stokes methods, which operate in different regions, use different mesh densities, and are updated using differentsized time steps. Hybrid numerical results are compared with full particle and full continuum simulations as well as with experimental data. The hybrid particle-continuum simulations are demonstrated to reproduce experimental and full particle simulation results for surface and flowfield properties including velocity slip, temperature jump, thermal nonequilibrium, heating rates, and pressure distributions with high accuracy. The hybrid method, which uses particle simulation next to the surface, is also shown to predict accurate heating rates even when a highly dissipative numerical scheme is used for the continuum solver. For this particular flow, a hybrid simulation is obtained with modest computational savings over full particle simulation.

Original languageEnglish (US)
Pages (from-to)2086-2095
Number of pages10
JournalAIAA journal
Issue number8
StatePublished - Aug 2008

Bibliographical note

Funding Information:
This work, performed at the University of Michigan, is sponsored by the Space Vehicle Transportation Institute under NASA grant NCC3-989 with joint sponsorship from the U.S. Department of Defense and from the U.S. Air Force Office of Scientific Research grant FA9550-05-1-0115. This work is also supported by the Francois-Xavier Bagnoud Foundation.


Dive into the research topics of 'Hybrid particle-continuum simulations of hypersonic flow over a hollow-cylinder-flare geometry'. Together they form a unique fingerprint.

Cite this