Hybrid macroporous materials for heavy metal ion adsorption

Rick C. Schroden, Mohammed Al-Daous, Sergey Sokolov, Brian J. Melde, Justin C. Lytle, Andreas Stein, Mari Carmen Carbajo, José Torralvo Fernández, Eduardo Enciso Rodríguez

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Hybrid macroporous materials with thiol functional groups attached to titania and zirconia frameworks have been prepared via colloidal crystal templating techniques for use as heavy metal ion adsorbents. Synthesis procedures are described for the preparation of thiol-metal oxide materials containing either siloxane or sulfonate linkages. The hybrid macroporous materials were characterized by SEM, FT-IR, 29Si MAS NMR, elemental analysis, and nitrogen adsorption. The materials contained high levels of chemically anchored thiol groups and had uniform porous structures. The hybrid macroporous materials were effective adsorbents for the removal of heavy metal ions from solution, with adsorption capacities ranging from 0.33 to 1.41 mmol g-1 for mercury(II) ions and 0.27 to 1.24 mmol g-1 for lead(II) ions. The hybrid materials remained effective for metal ion adsorption after regeneration by an acid wash, with metal ion loading capacities of the recycled materials being on average two-thirds that of the original capacities. The metal ion adsorption capacity and reusability of hybrid macroporous materials makes them promising adsorbents for wastewater cleanup.

Original languageEnglish (US)
Pages (from-to)3261-3267
Number of pages7
JournalJournal of Materials Chemistry
Volume12
Issue number11
DOIs
StatePublished - Nov 1 2002

Fingerprint Dive into the research topics of 'Hybrid macroporous materials for heavy metal ion adsorption'. Together they form a unique fingerprint.

Cite this