Hunt for the unique, stable, sparse and fast feature learning on graphs

Saurabh Verma, Zhi Li Zhang

Research output: Contribution to journalConference article

19 Scopus citations

Abstract

For the purpose of learning on graphs, we hunt for a graph feature representation that exhibit certain uniqueness, stability and sparsity properties while also being amenable to fast computation. This leads to the discovery of family of graph spectral distances (denoted as FGSD) and their based graph feature representations, which we prove to possess most of these desired properties. To both evaluate the quality of graph features produced by FGSD and demonstrate their utility, we apply them to the graph classification problem. Through extensive experiments, we show that a simple SVM based classification algorithm, driven with our powerful FGSD based graph features, significantly outperforms all the more sophisticated state-of-art algorithms on the unlabeled node datasets in terms of both accuracy and speed; it also yields very competitive results on the labeled datasets - despite the fact it does not utilize any node label information.

Original languageEnglish (US)
Pages (from-to)88-98
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - Jan 1 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

Fingerprint Dive into the research topics of 'Hunt for the unique, stable, sparse and fast feature learning on graphs'. Together they form a unique fingerprint.

Cite this