Humidity as a non-pharmaceutical intervention for influenza A

Jennifer M. Reiman, Biswadeep Das, Gregory M. Sindberg, Mark D. Urban, Madeleine E.M. Hammerlund, Han B. Lee, Katie M. Spring, Jamie Lyman-Gingerich, Alex R. Generous, Tyler H. Koep, Kevin Ewing, Phil Lilja, Felicity T. Enders, Stephen C. Ekker, W. Charles Huskins, Hind J. Fadel, Chris Pierret

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Influenza is a global problem infecting 5-10% of adults and 20-30% of children annually. Non-pharmaceutical interventions (NPIs) are attractive approaches to complement vaccination in the prevention and reduction of influenza. Strong cyclical reduction of absolute humidity has been associated with influenza outbreaks in temperate climates. This study tested the hypothesis that raising absolute humidity above seasonal lows would impact influenza virus survival and transmission in a key source of influenza virus distribution, a community school. Air samples and objects handled by students (e.g. blocks and markers) were collected from preschool classrooms. All samples were processed and PCR used to determine the presence of influenza virus and its amount. Additionally samples were tested for their ability to infect cells in cultures. We observed a significant reduction (p < 0.05) in the total number of influenza A virus positive samples (air and fomite) and viral genome copies upon humidification as compared to control rooms. This suggests the future potential of artificial humidification as a possible strategy to control influenza outbreaks in temperate climates. There were 2.3 times as many ILI cases in the control rooms compared to the humidified rooms, and whether there is a causal relationship, and its direction between the number of cases and levels of influenza virus in the rooms is not known. Additional research is required, but this is the first prospective study suggesting that exogenous humidification could serve as a scalable NPI for influenza or other viral outbreaks.

Original languageEnglish (US)
Article numbere0204337
JournalPloS one
Volume13
Issue number9
DOIs
StatePublished - Sep 2018

Bibliographical note

Funding Information:
This work was supported by the Mayo Clinic to WCH and HJF and the National Center for Advancing Translational Sciences grant no. UL1 TR002377 to CP.

Publisher Copyright:
© 2018 Reiman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fingerprint

Dive into the research topics of 'Humidity as a non-pharmaceutical intervention for influenza A'. Together they form a unique fingerprint.

Cite this