TY - JOUR
T1 - Human parvovirus B19 DNA replication induces a DNA damageresponse that is dispensable for cell cycle arrest at phase G2/M
AU - Lou, Sai
AU - Luo, Yong
AU - Cheng, Fang
AU - Huang, Qinfeng
AU - Shen, Weiran
AU - Kleiboeker, Steve
AU - Tisdale, John F.
AU - Liu, Zhengwen
AU - Qiu, Jianming
PY - 2012/10
Y1 - 2012/10
N2 - Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells, in which it induces a DNA damage response (DDR). The DDR signaling is mainly mediated by the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway, which promotes replication of the viral genome; however, the exact mechanisms employed by B19V to take advantage of the DDR for virus replication remain unclear. In this study, we focused on the initiators of the DDR and the role of the DDR in cell cycle arrest during B19V infection. We examined the role of individual viral proteins, which were delivered by lentiviruses, in triggering a DDR in ex vivo-expanded primary human erythroid progenitor cells and the role of DNA replication of the B19V double-stranded DNA (dsDNA) genome in a human megakaryoblastoid cell line, UT7/Epo-S1 (S1). All the cells were cultured under hypoxic conditions. The results showed that none of the viral proteins induced phosphorylation of H2AX or replication protein A32 (RPA32), both hallmarks of a DDR. However, replication of the B19V dsDNA genome was capable of inducing the DDR. Moreover, the DDR per se did not arrest the cell cycle at the G2/M phase in cells with replicating B19V dsDNA genomes. Instead, the B19V nonstructural 1 (NS1) protein was the key factor in disrupting the cell cycle via a putative transactivation domain operating through a p53-independent pathway. Taken together, the results suggest that the replication of the B19V genome is largely responsible for triggering a DDR, which does not perturb cell cycle progression at G2/M significantly, during B19V infection.
AB - Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells, in which it induces a DNA damage response (DDR). The DDR signaling is mainly mediated by the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway, which promotes replication of the viral genome; however, the exact mechanisms employed by B19V to take advantage of the DDR for virus replication remain unclear. In this study, we focused on the initiators of the DDR and the role of the DDR in cell cycle arrest during B19V infection. We examined the role of individual viral proteins, which were delivered by lentiviruses, in triggering a DDR in ex vivo-expanded primary human erythroid progenitor cells and the role of DNA replication of the B19V double-stranded DNA (dsDNA) genome in a human megakaryoblastoid cell line, UT7/Epo-S1 (S1). All the cells were cultured under hypoxic conditions. The results showed that none of the viral proteins induced phosphorylation of H2AX or replication protein A32 (RPA32), both hallmarks of a DDR. However, replication of the B19V dsDNA genome was capable of inducing the DDR. Moreover, the DDR per se did not arrest the cell cycle at the G2/M phase in cells with replicating B19V dsDNA genomes. Instead, the B19V nonstructural 1 (NS1) protein was the key factor in disrupting the cell cycle via a putative transactivation domain operating through a p53-independent pathway. Taken together, the results suggest that the replication of the B19V genome is largely responsible for triggering a DDR, which does not perturb cell cycle progression at G2/M significantly, during B19V infection.
UR - http://www.scopus.com/inward/record.url?scp=84869048568&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869048568&partnerID=8YFLogxK
U2 - 10.1128/JVI.01007-12
DO - 10.1128/JVI.01007-12
M3 - Article
C2 - 22837195
AN - SCOPUS:84869048568
SN - 0022-538X
VL - 86
SP - 10748
EP - 10758
JO - Journal of virology
JF - Journal of virology
IS - 19
ER -