Human papillomavirus testing with Pap triage for cervical cancer prevention in Canada: A cost-effectiveness analysis

Shalini L. Kulasingam, Raghu Rajan, Yvan St Pierre, C. Victoria Atwood, Evan R. Myers, Eduardo L. Franco

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Background: Recently published results from a large randomized trial (Canadian Cervical Cancer Screening Trial study group) suggest that human papillomavirus testing followed by Pap smear-based triage for human papillomavirus positive women may be an effective way to screen women for cervical cancer. We determined the potential cost-effectiveness of including human papillomavirus tests for cervical cancer screening for Canada and three provinces: Alberta, Newfoundland and Ontario. Methods: We developed four Markov decision models using data from relevant Canadian and provincial studies and databases. The models were used to determine the number of false positive test results, cancers, lifetime costs and life-expectancy for 27 different screening strategies that varied by age to begin screening (18 or 25 years), screening interval (one, two, three, or five years) and whether the currently recommended strategy (screening every year from age 18 until 21 and then every three years afterwards with conventional Paps) was conducted prior to age 25. Strategies were compared using incremental cost-effectiveness ratios. Results: Screening strategies beginning at age 18 were associated with a substantial increase in the number of false-positive test results but only small differences in the number of cancers compared to the same strategy conducted beginning at age 25. Strategies of human papillomavirus testing first, followed by triage with Pap smears were associated with lower costs and greater increases in life-expectancy than the currently recommended screening strategy in Canada. Conclusion: A strategy of human papillomavirus testing beginning at age 25, with Pap triage for women with positive human papillomavirus results may be more effective at reducing cervical cancer at a lower cost than the current recommended strategy for screening in Canada.

Original languageEnglish (US)
Article number69
JournalBMC medicine
StatePublished - Nov 9 2009

Bibliographical note

Funding Information:
Shalini Kulasingam has previously received research support from Merck, Inc and CSL-Australia. She has also served as a consultant for CSL-New Zealand and Sanofi-Pasteur MSD. Shalini Kulasingam is currently a consultant for Medtronic. Raghu Rajan, Yvan St. Pierre and C. Victoria Atwood have no competing interests. Evan Myers has received research funding and served as a consultant for Merck, Inc, and as a consultant for GlaxoSmithKline. Edu-ardo Franco has served in advisory boards or as a consultant for companies involved with HPV vaccination (GlaxoSmithKline and Merck), HPV diagnostics (Roche, Qiagen, Gen-Probe), and cervical cancer screening (Cytyc, Ikonisys). He has also received unconditional research grant support from Merck for an investigator-initiated molecular epidemiology project.

Funding Information:
This study was partially funded by the National Cancer Institute of Canada [grant # 014033, PI: R. Rajan] and by a team grant from the Canadian Institutes of Health Research [grant # 83320, CIHR Team in HPV infection and associated diseases; PI: E. L. Franco]. Raghu Rajan received personal support as a chercheur-boursier-clinicien from the Fonds de la recherche en santé du Québec. Shalini L. Kulasingam is currently funded by a career development award from the National Institute of Health, National Cancer Institute, United States [1K07-CA113773]. C.V. Atwood received a graduate fellowship from Merck-Frosst, Inc., Canada. The authors are indebted to Dr. Marie-Helene Mayrand for valuable advice concerning cervical cancer screening and management practices in Canada.


Dive into the research topics of 'Human papillomavirus testing with Pap triage for cervical cancer prevention in Canada: A cost-effectiveness analysis'. Together they form a unique fingerprint.

Cite this