Human head models and populational framework for simulating brain stimulations

Taylor A. Berger, Miles Wischnewski, Alexander Opitz, Ivan Alekseichuk

Research output: Contribution to journalArticlepeer-review

Abstract

Noninvasive brain stimulation (NIBS) is pivotal in studying human brain-behavior relations and treating brain disorders. NIBS effectiveness relies on informed targeting of specific brain regions, a challenge due to anatomical differences between humans. Computational volumetric head modeling can capture individual effects and enable comparison across a population. However, most studies implementing modeling use a single-head model, ignoring morphological variability, potentially skewing interpretation, and realistic precision. We present a comprehensive dataset of 100 realistic head models with variable tissue conductivity values, lead-field matrices, standard-space co-registrations, and quality-assured tissue segmentations to provide a large sample of healthy adult head models with anatomical and tissue variance. Leveraging the Human Connectome Project s1200 release, this dataset powers population head modeling for stimulation target optimization, MEEG source modeling simulations, and advanced meta-analysis of brain stimulation studies. We performed a quality assessment for each head mesh, which included a semi-manual segmentation accuracy correction and finite-element analysis quality measures. This dataset will facilitate brain stimulation developments in academic and clinical research.

Original languageEnglish (US)
Article number516
JournalScientific Data
Volume12
Issue number1
DOIs
StatePublished - Dec 2025

Bibliographical note

Publisher Copyright:
© The Author(s) 2025.

PubMed: MeSH publication types

  • Journal Article
  • Dataset

Fingerprint

Dive into the research topics of 'Human head models and populational framework for simulating brain stimulations'. Together they form a unique fingerprint.

Cite this