TY - GEN
T1 - How to use heuristics for differential privacy
AU - Neel, Seth
AU - Roth, Aaron
AU - Wu, Zhiwei Steven
N1 - Publisher Copyright:
© 2019 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/11
Y1 - 2019/11
N2 - We develop theory for using heuristics to solve computationally hard problems in differential privacy. Heuristic approaches have enjoyed tremendous success in machine learning, for which performance can be empirically evaluated. However, privacy guarantees cannot be evaluated empirically, and must be proven-without making heuristic assumptions. We show that learning problems over broad classes of functions-Those that have polynomially sized universal identification sets-can be solved privately and efficiently, assuming the existence of a non-private oracle for solving the same problem. Our first algorithm yields a privacy guarantee that is contingent on the correctness of the oracle. We then give a reduction which applies to a class of heuristics which we call certifiable, which allows us to convert oracle-dependent privacy guarantees to worst-case privacy guarantee that hold even when the heuristic standing in for the oracle might fail in adversarial ways. Finally, we consider classes of functions for which both they and their dual classes have small universal identification sets. This includes most classes of simple boolean functions studied in the PAC learning literature, including conjunctions, disjunctions, parities, and discrete halfspaces. We show that there is an efficient algorithm for privately constructing synthetic data for any such class, given a non-private learning oracle. This in particular gives the first oracle-efficient algorithm for privately generating synthetic data for contingency tables. The most intriguing question left open by our work is whether or not every problem that can be solved differentially privately can be privately solved with an oracle-efficient algorithm. While we do not resolve this, we give a barrier result that suggests that any generic oracle-efficient reduction must fall outside of a natural class of algorithms (which includes the algorithms given in this paper).
AB - We develop theory for using heuristics to solve computationally hard problems in differential privacy. Heuristic approaches have enjoyed tremendous success in machine learning, for which performance can be empirically evaluated. However, privacy guarantees cannot be evaluated empirically, and must be proven-without making heuristic assumptions. We show that learning problems over broad classes of functions-Those that have polynomially sized universal identification sets-can be solved privately and efficiently, assuming the existence of a non-private oracle for solving the same problem. Our first algorithm yields a privacy guarantee that is contingent on the correctness of the oracle. We then give a reduction which applies to a class of heuristics which we call certifiable, which allows us to convert oracle-dependent privacy guarantees to worst-case privacy guarantee that hold even when the heuristic standing in for the oracle might fail in adversarial ways. Finally, we consider classes of functions for which both they and their dual classes have small universal identification sets. This includes most classes of simple boolean functions studied in the PAC learning literature, including conjunctions, disjunctions, parities, and discrete halfspaces. We show that there is an efficient algorithm for privately constructing synthetic data for any such class, given a non-private learning oracle. This in particular gives the first oracle-efficient algorithm for privately generating synthetic data for contingency tables. The most intriguing question left open by our work is whether or not every problem that can be solved differentially privately can be privately solved with an oracle-efficient algorithm. While we do not resolve this, we give a barrier result that suggests that any generic oracle-efficient reduction must fall outside of a natural class of algorithms (which includes the algorithms given in this paper).
KW - Differential privacy
KW - Oracle-efficiency
KW - Private optimization
KW - Private synthetic data
UR - http://www.scopus.com/inward/record.url?scp=85078444068&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078444068&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2019.00014
DO - 10.1109/FOCS.2019.00014
M3 - Conference contribution
AN - SCOPUS:85078444068
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 72
EP - 93
BT - Proceedings - 2019 IEEE 60th Annual Symposium on Foundations of Computer Science, FOCS 2019
PB - IEEE Computer Society
T2 - 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019
Y2 - 9 November 2019 through 12 November 2019
ER -