How do you measure distance in spatial models? an example using open-space valuation

Heather A. Sander, Debarchana Ghosh, David van Riper, Steven M. Manson

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Spatial distance is a critical component of theories across the social, natural, and information sciences, but too often the methods and metrics used to describe spatial distance are implicit or underspecified. How distance is measured may influence model results in unanticipated ways. We examined the differences among distances calculated in three ways: Euclidean distances, vector-based road-network distances, and raster-based cost-weighted distances. We applied these different meas-ures to the case of the economic value of open space, which is frequently derived using hedonic pricing (HP) models. In HP models, distance to open space is used to quantify access for residential properties. Under the assumption that vector-based road distances better match actual travel distance between homes and open spaces, we compared these distances with Euclidean and raster-based cost-weighted distances, finding that the distance values themselves differed significantly. Open-space values estimated using these distances in hedonic models differed greatly and values for Euclidean and cost-weighted distances to open space were much lower than those for road-network distances. We also highlight computational issues that can lead to counterintuitive effects in distance calcu-lations. We recommend the use of road-network distances in valuing open space using HP models and caution against the use of Euclidean and cost-weighted distances unless there are compelling theoretical reasons to do so. 2010 Pion Ltd and its Licensors.

Original languageEnglish (US)
Pages (from-to)874-894
Number of pages21
JournalEnvironment and Planning B: Planning and Design
Volume37
Issue number5
DOIs
StatePublished - Jan 1 2010

Fingerprint

open space
valuation
road network
pricing
Costs
costs
raster
cost
Values
economic value
natural sciences
information science
Natural sciences
Information science
Social sciences
social science
travel
road
Economics
economics

Cite this

How do you measure distance in spatial models? an example using open-space valuation. / Sander, Heather A.; Ghosh, Debarchana; van Riper, David; Manson, Steven M.

In: Environment and Planning B: Planning and Design, Vol. 37, No. 5, 01.01.2010, p. 874-894.

Research output: Contribution to journalArticle

@article{b39b049115f5423a937659d033887fc2,
title = "How do you measure distance in spatial models? an example using open-space valuation",
abstract = "Spatial distance is a critical component of theories across the social, natural, and information sciences, but too often the methods and metrics used to describe spatial distance are implicit or underspecified. How distance is measured may influence model results in unanticipated ways. We examined the differences among distances calculated in three ways: Euclidean distances, vector-based road-network distances, and raster-based cost-weighted distances. We applied these different meas-ures to the case of the economic value of open space, which is frequently derived using hedonic pricing (HP) models. In HP models, distance to open space is used to quantify access for residential properties. Under the assumption that vector-based road distances better match actual travel distance between homes and open spaces, we compared these distances with Euclidean and raster-based cost-weighted distances, finding that the distance values themselves differed significantly. Open-space values estimated using these distances in hedonic models differed greatly and values for Euclidean and cost-weighted distances to open space were much lower than those for road-network distances. We also highlight computational issues that can lead to counterintuitive effects in distance calcu-lations. We recommend the use of road-network distances in valuing open space using HP models and caution against the use of Euclidean and cost-weighted distances unless there are compelling theoretical reasons to do so. 2010 Pion Ltd and its Licensors.",
author = "Sander, {Heather A.} and Debarchana Ghosh and {van Riper}, David and Manson, {Steven M.}",
year = "2010",
month = "1",
day = "1",
doi = "10.1068/b35126",
language = "English (US)",
volume = "37",
pages = "874--894",
journal = "Environment and Planning B: Planning and Design",
issn = "0265-8135",
publisher = "Pion Ltd.",
number = "5",

}

TY - JOUR

T1 - How do you measure distance in spatial models? an example using open-space valuation

AU - Sander, Heather A.

AU - Ghosh, Debarchana

AU - van Riper, David

AU - Manson, Steven M.

PY - 2010/1/1

Y1 - 2010/1/1

N2 - Spatial distance is a critical component of theories across the social, natural, and information sciences, but too often the methods and metrics used to describe spatial distance are implicit or underspecified. How distance is measured may influence model results in unanticipated ways. We examined the differences among distances calculated in three ways: Euclidean distances, vector-based road-network distances, and raster-based cost-weighted distances. We applied these different meas-ures to the case of the economic value of open space, which is frequently derived using hedonic pricing (HP) models. In HP models, distance to open space is used to quantify access for residential properties. Under the assumption that vector-based road distances better match actual travel distance between homes and open spaces, we compared these distances with Euclidean and raster-based cost-weighted distances, finding that the distance values themselves differed significantly. Open-space values estimated using these distances in hedonic models differed greatly and values for Euclidean and cost-weighted distances to open space were much lower than those for road-network distances. We also highlight computational issues that can lead to counterintuitive effects in distance calcu-lations. We recommend the use of road-network distances in valuing open space using HP models and caution against the use of Euclidean and cost-weighted distances unless there are compelling theoretical reasons to do so. 2010 Pion Ltd and its Licensors.

AB - Spatial distance is a critical component of theories across the social, natural, and information sciences, but too often the methods and metrics used to describe spatial distance are implicit or underspecified. How distance is measured may influence model results in unanticipated ways. We examined the differences among distances calculated in three ways: Euclidean distances, vector-based road-network distances, and raster-based cost-weighted distances. We applied these different meas-ures to the case of the economic value of open space, which is frequently derived using hedonic pricing (HP) models. In HP models, distance to open space is used to quantify access for residential properties. Under the assumption that vector-based road distances better match actual travel distance between homes and open spaces, we compared these distances with Euclidean and raster-based cost-weighted distances, finding that the distance values themselves differed significantly. Open-space values estimated using these distances in hedonic models differed greatly and values for Euclidean and cost-weighted distances to open space were much lower than those for road-network distances. We also highlight computational issues that can lead to counterintuitive effects in distance calcu-lations. We recommend the use of road-network distances in valuing open space using HP models and caution against the use of Euclidean and cost-weighted distances unless there are compelling theoretical reasons to do so. 2010 Pion Ltd and its Licensors.

UR - http://www.scopus.com/inward/record.url?scp=77958100825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77958100825&partnerID=8YFLogxK

U2 - 10.1068/b35126

DO - 10.1068/b35126

M3 - Article

AN - SCOPUS:77958100825

VL - 37

SP - 874

EP - 894

JO - Environment and Planning B: Planning and Design

JF - Environment and Planning B: Planning and Design

SN - 0265-8135

IS - 5

ER -