Abstract
How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum (Dd). We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dd cells, the results suggest that this behavior will be found in many developing systems.
Original language | English (US) |
---|---|
Pages (from-to) | 203-222 |
Number of pages | 20 |
Journal | Journal of Theoretical Biology |
Volume | 231 |
Issue number | 2 |
DOIs | |
State | Published - Nov 21 2004 |
Bibliographical note
Funding Information:Research supported in part by NIH grant GM 29123, NSF grant DMS 9805494 and NSF grant DMS 0317372, the Max Planck Institute, Leipzig, and the Alexander von Humboldt Foundation.
Keywords
- Cell movement
- Cell-based model
- Dictyostelium discoideum
- Motive force