Holocene climate in the western Great Lakes National Parks and Lakeshores: Implications for future climate change

Margaret Davis, Christine Douglas, Randy Calcote, Kenneth L. Cole, Marjorie Green Winkler, Robyn Flakne

Research output: Contribution to journalArticlepeer-review

60 Scopus citations


We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is sensitive to continental-scale changes in climate and could be affected by future climate change. Plant and animal species sensitive to changes in the moisture regime could thus be endangered within the Great Lakes parks.

Original languageEnglish (US)
Pages (from-to)968-983
Number of pages16
JournalConservation biology : the journal of the Society for Conservation Biology
Issue number4
StatePublished - Aug 2000


Dive into the research topics of 'Holocene climate in the western Great Lakes National Parks and Lakeshores: Implications for future climate change'. Together they form a unique fingerprint.

Cite this