Abstract
Appended to the 5' end of nascent RNA polymerase II transcripts is 7-methyl guanosine (m 7G-cap) that engages nuclear cap-binding complex (CBC) to facilitate messenger RNA (mRNA) maturation. Mature mRNAs exchange CBC for eIF4E, the rate-limiting translation factor that is controlled through mTOR. Experiments in immune cells have now documented HIV-1 incompletely processed transcripts exhibited hypermethylated m 7G-cap and that the down-regulation of the trimethylguanosine synthetase-1-reduced HIV-1 infectivity and virion protein synthesis by several orders of magnitude. HIV-1 cap hypermethylation required nuclear RNA helicase A (RHA)/DHX9 interaction with the shape of the 5' untranslated region (UTR) primer binding site (PBS) segment. Down-regulation of RHA or the anomalous shape of the PBS segment abrogated hypermethylated caps and derepressed eIF4E binding for virion protein translation during global down-regulation of host translation. mTOR inhibition was detrimental to HIV-1 proliferation and attenuated Tat, Rev, and Nef synthesis. This study identified mutually exclusive translation pathways and the calibration of virion structural/accessory protein synthesis with de novo synthesis of the viral regulatory proteins. The hypermethylation of select, viral mRNA resulted in CBC exchange to heterodimeric CBP80/NCBP3 that expanded the functional capacity of HIV-1 in immune cells.
Original language | English (US) |
---|---|
Article number | e2105153118 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 119 |
Issue number | 1 |
DOIs | |
State | Published - Jan 4 2022 |
Bibliographical note
Publisher Copyright:© 2022 National Academy of Sciences. All rights reserved.
Keywords
- EIF4E inactivation
- M7G-cap methylation
- Nuclear RNA helicase
- RNA fate
- Virus–host interaction