Abstract
Histoplasma capsulatum is a common cause of fungal infection in certain geographic areas, and although most infections are asymptomatic, it is capable of causing histoplasmosis, a disseminated, life-threatening disease, especially in immunocompromised individuals. A deeper understanding of this host-pathogen interaction is needed to develop novel therapeutic strategies to counter lethal infection. Although several lines of evidence suggest that this fungus is neurotropic in HIV patients, little is known about the immunobiology of Histoplasma infection in the central nervous system [CNS]. The goal of the present study was to understand the innate neuroimmune mechanisms that recognize H. capsulatum during the initial stages of infection. Using a 293T stable cell line expressing murine Toll-like receptor 2 [TLR2], we show here that TLR2 recognizes H. capsulatum cell wall protein Yps3p and induces the activation of NF-κB. In further experiments, we tested the ability of Yps3p to induce signaling from TLR2 in primary microglial cells, the resident brain macrophages of the CNS. Our data show that H. capsulatum Yps3p induced TLR2 signaling in wild-type microglia, but not in microglia isolated from TLR2 KO mice, confirming that Yps3p is a ligand for TLR2. Furthermore, Yps3p-induced TLR2 signaling was suppressed by vaccinia virus-encoded TLR inhibitors. This is the first demonstration of a fungal protein serving as a TLR ligand and mediating signaling in primary brain cells.
Original language | English (US) |
---|---|
Article number | 30 |
Journal | Journal of Neuroinflammation |
Volume | 5 |
DOIs | |
State | Published - Jul 7 2008 |
Bibliographical note
Funding Information:This research was supported in part by a grant from the Minnesota Medical Foundation. JPW received support from NIH R01 awards HL055949 and AI052303. We thank Megan Bohse and Kimber Munson for recombinant protein purification, and Prof. Phillip Peterson for his input.