Abstract
Quantifying the continuous variation in human scalp hair morphology is of interest to anthropologists, geneticists, dermatologists and forensic scientists, but existing methods for studying hair form are time-consuming and not widely used. Here, we present a high-throughput sample preparation protocol for the imaging of both longitudinal (curvature) and cross-sectional scalp hair morphology. Additionally, we describe and validate a new Python package designed to process longitudinal and cross-sectional hair images, segment them, and provide measurements of interest. Lastly, we apply our methods to an admixed African-European sample (n = 140), demonstrating the benefit of quantifying hair morphology over classification, and providing evidence that the relationship between cross-sectional morphology and curvature may be an artefact of population stratification rather than a causal link.
Original language | English (US) |
---|---|
Article number | 11535 |
Journal | Scientific reports |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).