Abstract
A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO2 and SiO2 were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm2, on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m2) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W / m · tan - 1 (t / m) in the transition region between the two.
Original language | English (US) |
---|---|
Article number | 123106 |
Journal | Journal of Applied Physics |
Volume | 116 |
Issue number | 12 |
DOIs | |
State | Published - Sep 28 2014 |
Bibliographical note
Publisher Copyright:© 2014 AIP Publishing LLC.