High-Angular Resolution Electron Backscatter Diffraction as a New Tool for Mapping Lattice Distortion in Geological Minerals

D. Wallis, L. N. Hansen, T. B. Britton, A. J. Wilkinson

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Analysis of distortions of the crystal lattice within individual mineral grains is central to the investigation of microscale processes that control and record tectonic events. These distortions are generally combinations of lattice rotations and elastic strains, but a lack of suitable observational techniques has prevented these components being mapped simultaneously and routinely in earth science laboratories. However, the technique of high-angular resolution electron backscatter diffraction (HR-EBSD) provides the opportunity to simultaneously map lattice rotation and elastic strain gradients with exceptional precision, on the order of 0.01° for rotations and 10−4 in strain, using a scanning electron microscope. Importantly, these rotations and lattice strains relate to densities of geometrically necessary dislocations and residual stresses. Recent works have begun to apply and adapt HR-EBSD to geological minerals, highlighting the potential of the technique to provide new insights into the microphysics of rock deformation. Therefore, the purpose of this review is to provide a summary of the technique, to identify caveats and targets for further development, and to suggest areas where it offers potential for major advances. In particular, HR-EBSD is well suited to characterizing the roles of different dislocation types during crystal plastic deformation and to mapping heterogeneous internal stress fields associated with specific deformation mechanisms/microstructures or changes in temperature, confining pressure, or macroscopic deviatoric stress. These capabilities make HR-EBSD a particularly powerful new technique for analyzing the microstructures of deformed geological materials.

Original languageEnglish (US)
Pages (from-to)6337-6358
Number of pages22
JournalJournal of Geophysical Research: Solid Earth
Issue number7
StatePublished - 2019
Externally publishedYes

Bibliographical note

Funding Information:
We thank David Kohlstedt and Andrew Parsons for providing samples. We thank Yves Bernabe for his editorial handling of the manuscript and two anonymous reviewers for their constructive comments. D. Wallis, L. N. Hansen, and A. J. Wilkinson acknowledge support from the Natural Environment Research Council grant NE/M0009661. T. B. Britton acknowledges support for his research fellowship from the Royal Academy of Engineering. Data in this paper can be accessed from GFZ Data Services (dataservices.gfz-potsdam.de/portal/).

Publisher Copyright:
©2019. The Authors.


  • elastic strain
  • geometrically necessary dislocation
  • microstructure
  • residual stress


Dive into the research topics of 'High-Angular Resolution Electron Backscatter Diffraction as a New Tool for Mapping Lattice Distortion in Geological Minerals'. Together they form a unique fingerprint.

Cite this