TY - JOUR
T1 - High affinity interaction between C4b-binding protein and vitamin K-dependent protein S in the presence of calcium
T2 - Suggestion of a third component in blood regulating the interaction
AU - Dahlbäck, Björn
AU - Frohm, Birgitta
AU - Nelsestuen, Gary
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1990/9/25
Y1 - 1990/9/25
N2 - The anticoagulant vitamin K-dependent protein S interacts with the complement regulatory protein C4b-binding protein (C4BP), both in purified systems and in plasma. The concentrations of these proteins in plasma are approximately equimolar (0.3 μM) and 30-40% of protein S in plasma is found in the noncomplexed state. Only the uncomplexed form of protein S displays anticoagulant activity and studies have shown that patients with a selective deficiency of free protein S have a high incidence of thrombosis. In this study, we report that the protein S-C4BP interaction is at least 100-fold tighter in the presence of Ca2+ than in EDTA. The KD in the presence of Ca2+ was estimated with a gel filtration technique to be less than 5 × 10-10 M, whereas in the presence of EDTA, it was approximately 100-fold higher. Ca2+ titration experiments suggested that the Ca2+ sites which function in the protein S-C4BP interaction are of high affinity which, in turn, suggests that they may be independent of the γ-carboxyglutamic acid region and may be present in the epidermal growth factor-like domains of protein S. The high affinity of the protein S-C4BP interaction in the presence of Ca2+ suggested that virtually all of the protein S in whole blood should be complexed with C4BP. However, even though the protein S-C4BP interaction in Ca2+-containing serum was shown to have the same high affinity as in purified systems, approximately 30-40% of the protein S in serum was free. These results appear best explained by the presence of a third component in whole blood which regulates the protein S-C4BP interaction, keeping approximately 30-40% of circulating protein S in its free, functionally anticoagulant form. It is speculated that persons with little free protein S may be deficient in this hypothetical third component.
AB - The anticoagulant vitamin K-dependent protein S interacts with the complement regulatory protein C4b-binding protein (C4BP), both in purified systems and in plasma. The concentrations of these proteins in plasma are approximately equimolar (0.3 μM) and 30-40% of protein S in plasma is found in the noncomplexed state. Only the uncomplexed form of protein S displays anticoagulant activity and studies have shown that patients with a selective deficiency of free protein S have a high incidence of thrombosis. In this study, we report that the protein S-C4BP interaction is at least 100-fold tighter in the presence of Ca2+ than in EDTA. The KD in the presence of Ca2+ was estimated with a gel filtration technique to be less than 5 × 10-10 M, whereas in the presence of EDTA, it was approximately 100-fold higher. Ca2+ titration experiments suggested that the Ca2+ sites which function in the protein S-C4BP interaction are of high affinity which, in turn, suggests that they may be independent of the γ-carboxyglutamic acid region and may be present in the epidermal growth factor-like domains of protein S. The high affinity of the protein S-C4BP interaction in the presence of Ca2+ suggested that virtually all of the protein S in whole blood should be complexed with C4BP. However, even though the protein S-C4BP interaction in Ca2+-containing serum was shown to have the same high affinity as in purified systems, approximately 30-40% of the protein S in serum was free. These results appear best explained by the presence of a third component in whole blood which regulates the protein S-C4BP interaction, keeping approximately 30-40% of circulating protein S in its free, functionally anticoagulant form. It is speculated that persons with little free protein S may be deficient in this hypothetical third component.
UR - http://www.scopus.com/inward/record.url?scp=0025051272&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025051272&partnerID=8YFLogxK
M3 - Article
C2 - 2144524
AN - SCOPUS:0025051272
SN - 0021-9258
VL - 265
SP - 16082
EP - 16087
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 27
ER -